• 제목/요약/키워드: Non-linear Function

검색결과 823건 처리시간 0.025초

MULTI-OBJECTIVES FUZZY MODELS FOR DESIGNING 3D TRAJECTORY IN HORIZONTAL WELLS

  • Qian, Weiyi;Feng, Enmin
    • Journal of applied mathematics & informatics
    • /
    • 제15권1_2호
    • /
    • pp.265-275
    • /
    • 2004
  • In this paper, multi-objective models for designing 3D trajectory of horizontal wells are developed in a fuzzy environment. Here, the objectives of minimizing the length of the trajectory and the error of entry target point are fuzzy in nature. Some parameters, such as initial value, end value, lower bound and upper bound of the curvature radius, tool-face angle and the arc length of each curve section, are also assumed to be vague and imprecise. The impreciseness in the above objectives have been expressed by fuzzy linear membership functions and that in the above parameters by triangular fuzzy numbers. Models have been solved by the fuzzy non-linear programming method based on Zimmermann [1] and Lee and Li [2]. Models are applied to practical design of the horizontal wells. Numerical results illustrate the accuracy and efficiency of the fuzzy models.

Nonlinear Entropy Production in a Reversible Oregonator Model

  • Basavaraja, C.;Pierson, R.;Park, Seung-Hyun;Jeon, Eun-Ji;Huh, Do-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권5호
    • /
    • pp.1051-1054
    • /
    • 2008
  • The entropy production in a non-equilibrium state based on the reversible Oregonator model of the Belousov-Zhabotinskii (BZ) reaction system has been studied. The reaction affinity and the reaction rate for the individual steps have been calculated by varying the concentrations of key variables in the system. The result shows a linear relationship between the reaction affinity and the reaction rate in the given concentration range. However, the overall entropy calculated on the basic assumption that the entropy in a reaction system corresponds to the summation of a product of reaction affinity and reaction rate of individual steps shows a nonlinearity of the reaction system. The results well agrees with the fact that the entropy production is not linear or complicated function in a non-linear reaction system.

측정불가능한 상태변수를 갖는 일반적인 단일 입력 계통에 대한 가변구조 제어기의 설계 (A Design of Variable Structure Controller for the General Single Input Systems with Unmeasurable State Variables)

  • 박귀태;최중경
    • 대한전기학회논문지
    • /
    • 제41권7호
    • /
    • pp.773-783
    • /
    • 1992
  • There have been several control schemes for the single input systems with unmeasurable state variables using variable structure control(VSC) theory. However, each of them is a study on the systems which can be represented in the phase canonical form or non-phase canonical form dynamic equation separately. As these control algorithms have difficulties in practical application by its theoretical limitations, in this paper we propose a new VSC theory which overcomes those limitations, in this paper we propose a new VSC theory which overcomes those limitations of proposed schemes. This new control scheme can be realized for the general linear systems which have unmeasurable state variables. And the switching function of this VSS algorithm consists of measurable state variable function(reduced-order switching function) and its derivatives. Also in the construction of control imput only measurable state variables are used.

  • PDF

이미지 보간기법의 성능 개선을 위한 비국부평균 기반의 후처리 기법 (Non-Local Mean based Post Processing Scheme for Performance Enhancement of Image Interpolation Method)

  • 김동형
    • 디지털산업정보학회논문지
    • /
    • 제16권3호
    • /
    • pp.49-58
    • /
    • 2020
  • Image interpolation, a technology that converts low resolution images into high resolution images, has been widely used in various image processing fields such as CCTV, web-cam, and medical imaging. This technique is based on the fact that the statistical distributions of the white Gaussian noise and the difference between the interpolated image and the original image is similar to each other. The proposed algorithm is composed of three steps. In first, the interpolated image is derived by random image interpolation. In second, we derive weighting functions that are used to apply non-local mean filtering. In the final step, the prediction error is corrected by performing non-local mean filtering by applying the selected weighting function. It can be considered as a post-processing algorithm to further reduce the prediction error after applying an arbitrary image interpolation algorithm. Simulation results show that the proposed method yields reasonable performance.

AN EXTENSION OF THE BETA FUNCTION EXPRESSED AS A COMBINATION OF CONFLUENT HYPERGEOMETRIC FUNCTIONS

  • Marfaing, Olivier
    • 호남수학학술지
    • /
    • 제43권2호
    • /
    • pp.183-197
    • /
    • 2021
  • Recently several authors have extended the Beta function by using its integral representation. However, in many cases no expression of these extended functions in terms of classic special functions is known. In the present paper, we introduce a further extension by defining a family of functions Gr,s : ℝ*+ → ℂ, with r, s ∈ ℂ and ℜ(r) > 0. For given r, s, we prove that this function satisfies a second-order linear differential equation with rational coefficients. Solving this ODE, we express Gr,s as a combination of confluent hypergeometric functions. From this we deduce a new integral relation satisfied by Tricomi's function. We then investigate additional specific properties of Gr,1 which take the form of new non trivial integral relations involving exponential and error functions. We discuss the connection between Gr,1 and Stokes' first problem (or Rayleigh problem) in fluid mechanics which consists in determining the flow created by the movement of an infinitely long plate. For $r{\in}{\frac{1}{2}}{\mathbb{N}}^*$, we find additional relations between Gr,1 and Hermite polynomials. In view of these results, we believe the family of extended beta functions Gr,s will find further applications in two directions: (i) for improving our knowledge of confluent hypergeometric functions and Tricomi's function, (ii) and for engineering and physics problems.

가동자석형 LDM의 고속 위치제어에 관한 연구 (High Speed Position Control of MM Type LDM)

  • 백수현;김용;함중걸;이준철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 하계학술대회 논문집 A
    • /
    • pp.482-484
    • /
    • 1994
  • In this paper, to realize high speed position control of LDM (Linear DC Motor), the minimum time control method is applied. But, In this control method, calculation of non-linear function is required Therefore, in order to avoid this complex calculation, optimum switching of the Bang-Bang control is done on parabola type switching function established in the plane of phase. But, the sliding mode is occurred due to the modeling error of LDM and the variation of parameters. Thereby, the optimum 'control is not realized. In order to realize optimum control, the algorithm to modify switching function is proposed

  • PDF

FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS AND MODIFIED RIEMANN-LIOUVILLE DERIVATIVE NEW METHODS FOR SOLUTION

  • Jumarie, Guy
    • Journal of applied mathematics & informatics
    • /
    • 제24권1_2호
    • /
    • pp.31-48
    • /
    • 2007
  • The paper deals with the solution of some fractional partial differential equations obtained by substituting modified Riemann-Liouville derivatives for the customary derivatives. This derivative is introduced to avoid using the so-called Caputo fractional derivative which, at the extreme, says that, if you want to get the first derivative of a function you must before have at hand its second derivative. Firstly, one gives a brief background on the fractional Taylor series of nondifferentiable functions and its consequence on the derivative chain rule. Then one considers linear fractional partial differential equations with constant coefficients, and one shows how, in some instances, one can obtain their solutions on bypassing the use of Fourier transform and/or Laplace transform. Later one develops a Lagrange method via characteristics for some linear fractional differential equations with nonconstant coefficients, and involving fractional derivatives of only one order. The key is the fractional Taylor series of non differentiable function $f(x+h)=E_{\alpha}(h^{\alpha}{D_x^{\alpha})f(x)$.

Constitutive Model of Tendon Responses to Multiple Cyclic Demands (II) -Theory and Comparison-

  • Chun, Keyoung-Jin;Robert P. Hubbard
    • Journal of Mechanical Science and Technology
    • /
    • 제15권9호
    • /
    • pp.1281-1291
    • /
    • 2001
  • The hereditary integral form of a quasi-linear viscoelastic law has been employed. Four new concepts have been employed: 1. a reduced relaxation function with a non-linear exponential function of time, 2. an inverse method to determine the scale factor of the elastic response, 3. an instant elastic recovery strain during unloading, and 4. the results of a constitutive model for cyclic tests may be a function of the Heavyside class. These concepts have been supported by agreement between measured and predicted responses of soft connective tissue to three types of multiple cyclic tests which include rest periods of no extension and alternations between different strain levels. Such agreement has not been attained in the previous studies. Chun and Hubbard (2001) is our companion experimental analysis paper.

  • PDF

지연에 민감한 멀티미디어 응용을 위한 재생 동기화 메카니즘 (Playout synchronization mechanism for delay-sensitive multimedia applications)

  • 유상신;이성근;김덕진
    • 전자공학회논문지A
    • /
    • 제33A권4호
    • /
    • pp.57-67
    • /
    • 1996
  • This paper aims to support delay-sensitive multimedia applications by suggesting a mechanism in which maintains almost constant end-to-end delay thus providing the optimum playout synchronization. For this task the sum of network delay and buffering delay is entiredly managed and to eliminate little delay fluctuations and instantaneous delays at a buffer and a network, a low pass filter is used. Furthermore the correction function, which is used for maintaining the buffering level ot a reference value, is a non-linear step function, unlike the existing linear and continuous function. it has a different step sizes adapting to a traffic characteristics of a network congestion. the proposed mechanism has been confirmed of it sefficiency through SLAM-II netowrk.

  • PDF

SOURCES OF NON-LINEARITY IN NIR SPECTRA OF SCATTERING SAMPLES

  • Dahm, Donald J.
    • 한국근적외분광분석학회:학술대회논문집
    • /
    • 한국근적외분광분석학회 2001년도 NIR-2001
    • /
    • pp.1011-1011
    • /
    • 2001
  • In general, NIR reflectance spectra (whether recorded using log(1/R) or the Kubelka-Munk function) are not linear functions of the concentration of the absorbers which we are measuring. There are several causes for this non-linearity, the most commonly cited one being front surface reflection. However, non-linearity also arises from the effects of particle size, sample thickness, void fraction, and experimental arrangement. In this talk, we will attempt to isolate the effects of the various causes, and show the effects of each, using both theoretical calculations and actual data. The listener should then be able to assess where we stand in our quest to produce “linear” data through pre-processing and/or alternate collection schemes.

  • PDF