• Title/Summary/Keyword: Non-linear Effect

Search Result 978, Processing Time 0.025 seconds

Analysis of 3-D non-linear truss smart actuator using SMA (형상기억합금을 이용한 3 차원 비선형 트러스 지능작동기 해석)

  • Yang, Seong-Pil;Kim, Sang-Haun;Li, Ningxue;Ryu, Jung-Hyun;Cho, Maeng-Hyo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.557-561
    • /
    • 2008
  • Shape memory alloys (SMA) have interesting features which are the superelastic effect (SE), shape memory effect (SME), two-way SME (TWSME), and so on. These are utilized in actuation factor. The thermo-mechanical constitutive equations of SMA proposed by Lagoudas et al. were employed in the present study for simulating SMA truss structures. The constitutive equation includes the necessary internal variables to account for the material transformations and is utilized in the non-linear finite element procedure of three dimensional truss structures that composed SMA bar (wholly or partially). In this study, we observed which element should be actuated to get a desired shape (actuation shape) from computational analysis. To reach this goal, we apply SMA constitutive equation to non-linear finite element formulation. And then, we simulate two-way shape memory effect as well as superelastic effect of various three dimensional truss using SMA.

  • PDF

Free vibrations of fluid conveying microbeams under non-ideal boundary conditions

  • Atci, Duygu;Bagdatli, Suleyman Murat
    • Steel and Composite Structures
    • /
    • v.24 no.2
    • /
    • pp.141-149
    • /
    • 2017
  • In this study, vibration analysis of fluid conveying microbeams under non-ideal boundary conditions (BCs) is performed. The objective of the present paper is to describe the effects of non-ideal BCs on linear vibrations of fluid conveying microbeams. Non-ideal BCs are modeled as a linear combination of ideal clamped and ideal simply supported boundary conditions by using the weighting factor (k). Non-ideal clamped and non-ideal simply supported beams are both considered to show the effects of BCs. Equations of motion of the beam under the effect of moving fluid are obtained by using Hamilton principle. Method of multiple scales which is one of the perturbation techniques is applied to the governing linear equation of motion. Approximate solutions of the linear equation are obtained and the effects of system parameters and non-ideal BCs on natural frequencies are presented. Results indicate that, natural frequencies of fluid conveying microbeam changed significantly by varying the weighting factor k. This change is more remarkable for clamped microbeams rather than simply supported ones.

Seismic analysis of Roller Compacted Concrete (RCC) dams considering effect of viscous boundary conditions

  • Karabulut, Muhammet;Kartal, Murat E.
    • Computers and Concrete
    • /
    • v.25 no.3
    • /
    • pp.255-266
    • /
    • 2020
  • This study presents comparation of fixed and viscos boundary condition effects on three-dimensional earthquake response and performance of a RCC dam considering linear and non-linear response. For this purpose, Cine RCC dam constructed in Aydın, Turkey, is selected in applications. The Drucker-Prager material model is considered for concrete and foundation rock in the nonlinear time-history analyses. Besides, hydrodynamic effect was considered in linear and non-linear dynamic analyses for both conditions. The hydrodynamic pressure of the reservoir water is modeled with the fluid finite elements based on the Lagrangian approach. The contact-target element pairs were used to model the dam-foundation-reservoir interaction system. The interface between dam and foundation is modeled with welded contact for both fixed and viscos boundary conditions. The displacements and principle stress components obtained from the linear and non-linear analyses are compared each other for empty and full reservoir cases. Seismic performance analyses considering demand-capacity ratio criteria were also performed for each case. According to numerical analyses, the total displacements and besides seismic performance of the dam increase by the effect of the viscous boundary conditions. Besides, hydrodynamic pressure obviously decreases the performance of the dam.

Nonlinear dynamic analysis of spiral stiffened cylindrical shells rested on elastic foundation

  • Foroutan, Kamran;Shaterzadeh, Alireza;Ahmadi, Habib
    • Steel and Composite Structures
    • /
    • v.32 no.4
    • /
    • pp.509-519
    • /
    • 2019
  • In this paper, an analytical approach for the free vibration analysis of spiral stiffened functionally graded (SSFG) cylindrical shells is investigated. The SSFG shell is resting on linear and non-linear elastic foundation with damping force. The elastic foundation for the linear model is according to Winkler and Pasternak parameters and for the non-linear model, one cubic term is added. The material constitutive of the stiffeners is continuously changed through the thickness. Using the Galerkin method based on the von $K\acute{a}rm\acute{a}n$ equations and the smeared stiffeners technique, the non-linear vibration problem has been solved. The effects of different geometrical and material parameters on the free vibration response of SSFG cylindrical shells are adopted. The results show that the angles of stiffeners and elastic foundation parameters strongly effect on the natural frequencies of the SSFG cylindrical shell.

Effect of Non-lattice Oxygen Concentration on Non-linear Interfacial Resistive Switching Characteristic in Ultra-thin HfO2 Films

  • Kim, Yeong-Jae;Kim, Jong-Gi;Mok, In-Su;Lee, Gyu-Min;Son, Hyeon-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.359-360
    • /
    • 2013
  • The effect of electrode and deposition methods on non-linear interfacial resistive switching in HfO2 based $250{\times}250$ nm2 cross-point device was studied. HfO2 based device has the interfacial resistive switching properties of non-linearity and self-compliance current switching. The operating current in HfO2 based device was increased with negatively increasing the heat of formation energy in top electrode. Also, it was investigated that the operating current in HfO2 based device was changed with deposition methods of O3 reactant ALD, H2O reactant ALD and dc reactive sputtering, resulting the magnitude of the operating current and on/off ratio in order of HfO2 films deposited by dc reactive sputtering, H2O reactant ALD, and O3 reactant ALD. To investigate the effect of electrode and deposition methods on operating current of non-linear interfacial resistive switching in the cross-point device, X-ray photoelectron spectroscopy was measured. Through the analysis of O 1s spectra, non-lattice oxygen concentration, which is closely related to oxygen vacancies, was increased in order of Pt, TiN, and Ti top electrodes and in order of O3 reactant ALD, H2O reactant ALD, and O3 reactant ALD, and dc reactive sputtering deposition method. From all results, non-lattice oxygen concentration in ultra-thin HfO2 films play a crucial role in the operating current and memory states (LRS & HRS) in the non-linear interfacial resistive switching.

  • PDF

The Procedural Design and Evaluation of RPT Learning Model for NLE Beginners (비선형 편집 입문자를 위한 RPT 학습모형 절차 설계 및 평가)

  • Jang, Kyeong-Su
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.4
    • /
    • pp.163-172
    • /
    • 2017
  • In recent days, the Non-Linear Editing is mainly used in the field of broadcasting. In comparison to conventional editing, Non-Linear Editing can immediately access the image of the desired position and facilitate the insertion and deletion of video frame. Furthermore, it directly apply a title and transition effect to video frame. Moreover, it has an advantage of preview and easy modification in title effect, transition and editing prior to export. However, students who learn Non-Linear Editing first time are not easy to learn it. In this paper, we propose a new learning model based on Reciprocal Peer Teaching (RPT), which helps NLE beginners to understand Non-Linear editing more clearly. We divide the students into two groups i.e. control group and experimental group. The control group students do not apply proposed method while experimental group performs evaluation over our model. Furthermore, we carry out the experiments, which include the overall average of the two groups, academic achievement of students with low grades, standard deviation, T-test and satisfaction surveys. The experimental group shows the superiority in performed experiments and higher satisfaction ratings than the control group.

Design of Hierarchically Structured Clustering Algorithm and its Application (계층 구조 클러스터링 알고리즘 설계 및 그 응용)

  • Bang, Young-Keun;Park, Ha-Yong;Lee, Chul-Heui
    • Journal of Industrial Technology
    • /
    • v.29 no.B
    • /
    • pp.17-23
    • /
    • 2009
  • In many cases, clustering algorithms have been used for extracting and discovering useful information from non-linear data. They have made a great effect on performances of the systems dealing with non-linear data. Thus, this paper presents a new approach called hierarchically structured clustering algorithm, and it is applied to the prediction system for non-linear time series data. The proposed hierarchically structured clustering algorithm (called HCKA: Hierarchical Cross-correlation and K-means clustering Algorithms) in which the cross-correlation and k-means clustering algorithm are combined can accept the correlationship of non-linear time series as well as statistical characteristics. First, the optimal differences of data are generated, which can suitably reveal the characteristics of non-linear time series. Second, the generated differences are classified into the upper clusters for their predictors by the cross-correlation clustering algorithm, and then each classified differences are classified again into the lower fuzzy sets by the k-means clustering algorithm. As a result, the proposed method can give an efficient classification and improve the performance. Finally, we demonstrates the effectiveness of the proposed HCKA via typical time series examples.

  • PDF

A new hierarchic degenerated shell element for geometrically non-linear analysis of composite laminated square and skew plates

  • Woo, Kwang-Sung;Park, Jin-Hwan;Hong, Chong-Hyun
    • Structural Engineering and Mechanics
    • /
    • v.17 no.6
    • /
    • pp.751-766
    • /
    • 2004
  • This paper extends the use of the hierarchic degenerated shell element to geometric non-linear analysis of composite laminated skew plates by the p-version of the finite element method. For the geometric non-linear analysis, the total Lagrangian formulation is adopted with moderately large displacement and small strain being accounted for in the sense of von Karman hypothesis. The present model is based on equivalent-single layer laminate theory with the first order shear deformation including a shear correction factor of 5/6. The integrals of Legendre polynomials are used for shape functions with p-level varying from 1 to 10. A wide variety of linear and non-linear results obtained by the p-version finite element model are presented for the laminated skew plates as well as laminated square plates. A numerical analysis is made to illustrate the influence of the geometric non-linear effect on the transverse deflections and the stresses with respect to width/depth ratio (a/h), skew angle (${\beta}$), and stacking sequence of layers. The present results are in good agreement with the results in literatures.

Nonlinear seismic response of a masonry arch bridge

  • Sayin, Erkut
    • Earthquakes and Structures
    • /
    • v.10 no.2
    • /
    • pp.483-494
    • /
    • 2016
  • Historical structures that function as a bridge from past to present are the cultural and social reflections of societies. Masonry bridges are one of the important historical structures. These bridges are vulnerable against to seismic action. In this study, linear and non-linear dynamic analyses of historical Nadir Bridge are assessed. The bridge is modelled with three dimensional finite elements. For the seismic effect, artificial acceleration records are generated considering the seismic characteristics of the region where the bridge is located. Seismic response of the bridge is investigated.

Numerical Analysis for Contaminant Transport using a Dual Reactive Domain Model

  • 정대인;최종근
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.122-126
    • /
    • 2002
  • Contaminant transport in porous media is characterized by solving an advection-dispersion equation(ADE). The ADE can cover equilibrium phenomena of interest, which include sorption, decay, and chemical reactions. Among these phenomena, sorption mechanism is described by several types of sorption isotherm. If we assume the sorption isotherm as linear, the solution of ADE can be easily procured. However, if we consider the sorption isotherm as non-linear isotherm like a Dual Reactive Domain Model (DRDM), the resulting differential equation becomes non-linear. In this case, the solution of ADE cannot be easily acquired by an analytic method. In this paper, we present the numerical analysis of ADE using a DRDM. The results reveal that even if sorption data may be fitted well using linear or non-linear isotherm, the characteristics of contaminant transport of the two cases are different from each other. To be concrete, the retardation of linear isotherm has stronger effect than that of the DRDM. As the non-linearity of sorption isotherm increases, the difference of retardation effects of the two cases becomes larger. For a pulse source, the maximum concentration of the linear model is higher than that of the DRDM, but the plume of the DRDM moves faster than that of the linear model. Behaviors of contaminant transport using the DRDM are consistent with common features of a linear model. For instance, biodegradation effect becomes larger as time goes by The faster the seepage velocity is, the faster the plume of contaminant moves. The plume of the contaminant is distributed evenly over overall domain in the event of high dispersion coefficient.

  • PDF