• Title/Summary/Keyword: Non-isothermal

Search Result 281, Processing Time 0.026 seconds

The Effect of Preform Shape for Hot-forging Process of Aluminum-alloy (예비성형체형상이 알루미늄합금의 열간단조공정에 미치는 영향)

  • Kwon, Y.M.;Lee, Y.S.;Song, J.I.;Lee, J.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.106-110
    • /
    • 2001
  • A effective and accurate method of hot-forging process is essential to the design of optimized dies as well as workpiece of intial shape. the former is achieved by a proper forging sequence with invokes serious problem like excessive load and die wear, die failure, underfilling and lap defects. the latter is achieved by a proper preform design of case I, case II, case III. metal forming processes of aluminum-alloy forged at an effective strain and temperature are analyzed by the finite element method. the non-isothermal analysis have been compared with optimized in terms of preform shape.

  • PDF

The influence of fluid inertia and heat dissipation in fluid films (유체막에서 관성과 열 소산의 영향)

  • Kim, Eun-Pil
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.2
    • /
    • pp.224-234
    • /
    • 1997
  • It was demonstrated earlier that for laminar, isothermal flow of the lubricant in long journal bearings, inertia has negligible effect on the load carrying capacity and influences only the stability characteristics of the bearing. The question in the present paper is: 'will these conclusions of the isothermal theory remain valid in the presence of significant dissipation, or will lubricant inertia and dissipation interact non-linearly to bring about qualitative changes in bearing performance\ulcorner' The results obtained here assert that the effect of lubricant inertia on load carrying capacity remains negligible, irrespective of the rate of dissipation. The stability of the bearing is, however, affected by lubricant inertia. These results, although obtained here for long bearings with Sommerfeld and Gumbel boundary conditions, are believed to be applicable to practical bearing operations and affirm that bearing load may be calculated from classical, i. e., non-inertial theory.

Modeling of non-isothermal CO2 particle leaked from pressurized source: I. Behavior of single bubble

  • Chang, Daejun;Han, Sang Heon;Yang, Kyung-Won
    • Ocean Systems Engineering
    • /
    • v.2 no.1
    • /
    • pp.17-31
    • /
    • 2012
  • This study investigated the behavior of a non-isothermal $CO_2$ bubble formed through a leak process from a high-pressure source in a deep sea. Isenthalpic interpretation was employed to predict the state of the bubble just after the leak. Three modes of mass loss from the rising bubble were demonstrated: dissolution induced by mass transfer, condensation by heat transfer and phase separation by pressure decrease. A graphical interpretation of the last mode was provided in the pressure-enthalpy diagram. A threshold pressure (17.12 bar) was identified below which the last mode was no longer present. The second mode was as effective as the first for a bubble formed in deep water, leading to faster mass loss. To the contrary, only the first mode was active for a bubble formed in a shallow region. The third mode was insignificant for all cases.

Kinetic Modeling of Non-Isothermal Anionic Styrene-Butadiene Block Copolymerization And Its Industrial Applications

  • Park, Seung-Young;Yeon, Young-Joo;Lee, Jong-Ku
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.380-380
    • /
    • 2006
  • Styrene-Butadiene diblock or styrene-butadiene-styrene triblock copolymers are industrially important materials for asphalt modification and adhesives. A kinetic modeling study on non-isothermal anionic styrene-butadiene diblock copolymerization system is presented. The model deals with the association/dissociation reaction of initiator and propagating ion pairs in its kinetic scheme. By comparing model calculation results with real plant data, it is possible to obtain useful ideas for more efficient plant operation. For example, the model clearly provides important relation between the reaction temperature profile and the conversion of monomers.

  • PDF

Instability Analysis of Natural Convection Flow along Isothermal Vertical Cylindrical Surfaces (등온 수직 원통표면을 연하여 흐르는 자연대류 유동의 파형 불안정성)

  • 유정열;윤준원;노승탁
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.1
    • /
    • pp.161-169
    • /
    • 1989
  • A stability problem on wave instability of natural convection flow along isothermal vertical cylindrical surfaces has been formulated, accounting for the non-parallelism of the basic flow and thermal fields. Then the problem is solved numerically under the simplifying assumption of the parallelism of the basic flow quantities. It is shown that the flow corresponding to the same characteristic boundary layer thickness becomes more stable as the value of the curvature parameter increases. The stability characteristics for Pr=0.7 appear to be more sensitive to the curvature parameter than those for Pr=7.

Evaluation of Structure Development of Xanthan and Carob Bean Gum Mixture Using Non-Isothermal Kinetic Model

  • Yoon, Won-Byong;Gunasekaran, Sundaram
    • Food Science and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.954-957
    • /
    • 2007
  • Gelation mechanism of xanthan-carob mixture (X/C) was investigated based on thermorheological behavior. Three X/C ratios (1:3, 1:1, and 3:1) were studied. Small amplitude oscillatory shear tests were performed to measure linear viscoelastic behavior during gelation. Temperature sweep ($-1^{\circ}C/min$) experiments were conducted. Using a non-isothermal kinetic model, activation energy (Ea) during gelation was calculated. At 1% total concentration, the Ea for xanthan fraction (${\phi}_x$)=0.25, 0.5, and 0.75 were 178, 159, and 123 kJ/mol, respectively. However, a discontinuity was observed in the activation energy plots. Based on this, two gelation mechanisms were presumed-association of xanthan and carob molecules and aggregation of polymer strands. The association process is the primary mechanism to form 3-D networks in the initial stage of gelation and the aggregation of polymer strands played a major role in the later stage.

Large Eddy Simulation of an Isothermal Swirling Flow in a Model Gas Turbine Combustor (모델 가스터빈 연소기에서 등온 선회유동의 대 와동 모사)

  • Hwang, Chul-Hong;Lee, Chang-Eon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.462-468
    • /
    • 2004
  • Large eddy simulation(LES) methodology used to model isothermal non-swirling and swirling flows in a model gas turbine combustor. The LES solver was implemented on parallel computer consisting 16 processors. To verify the capability of LES code and characterize swirling flow, the results was compared with that of Reynolds Averaged Navier-Stokes(RANS) using k -$\epsilon$ model as well as experimental data. The results showed that the LES and RANS well predicted the mean velocity field of a non-swirling flow. Specially, the LES showed a very excellent prediction performance for the corner recirculation zone. In swirling flow, comparing with the results obtained by RANS, LES showed a better performance in predicting the mean axial and azimuthal velocities, and the central recirculation zone. Finally, unsteady phenomena of turbulent flow was examined with LES methodology.

  • PDF

Finite Element Simulation of a Hot Aluminum Roll Forging Process and its Experimental Verification (열간 알루미늄 롤단조 공정의 유한요소해석과 실험적 검증)

  • Eom, J.G.;Li, Q.S.;Lee, M.C.;Joun, M.S.;Jung, S.J.;Park, G.H.;Gwak, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.437-440
    • /
    • 2009
  • In this paper, an aluminum ring forging process of manufacturing an optimized perform for a hot forging process is simulated using AFDEX 3D, a general-purpose metal forming simulator based on rigid-thermoviscoplastic finite element method. Non-isothermal analysis is carried out and the predictions are compared with the experiments in terms of dimensional accuracy. It was shown that the predictions are in good agreement with the experiments.

  • PDF

INFLUENCE OF CONSTANT HEAT SOURCE/SINK ON NON-DARCIAN-BENARD DOUBLE DIFFUSIVE MARANGONI CONVECTION IN A COMPOSITE LAYER SYSTEM

  • MANJUNATHA, N.;SUMITHRA, R.;VANISHREE, R.K.
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.1_2
    • /
    • pp.99-115
    • /
    • 2022
  • The problem of Benard double diffusive Marangoni convection is investigated in a horizontally infinite composite layer system consisting of a two component fluid layer above a porous layer saturated with the same fluid, using Darcy-Brinkman model with constant heat sources/sink in both the layers. The lower boundary of the porous region is rigid and upper boundary of the fluid region is free with Marangoni effects. The system of ordinary differential equations obtained after normal mode analysis is solved in closed form for the eigenvalue, thermal Marangoni number for two types of thermal boundary combinations, Type (I) Adiabatic-Adiabatic and Type (II) Adiabatic -Isothermal. The corresponding two thermal Marangoni numbers are obtained and the essence of the different parameters on non-Darcy-Benard double diffusive Marangoni convection are investigated in detail.