• Title/Summary/Keyword: Non-isolated converter

Search Result 91, Processing Time 0.024 seconds

Characteristics of Non-Isolated OSAKA Converter -Characteristics of Three-Phase Soft-Switching Power Factor Corrected Converter for Large Scale Power Without Three-Phase Transformer-

  • Taniguchi, Katsunori;Shimomori, Wataru;Lee, Hyun-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1383-1386
    • /
    • 2005
  • Non-isolated OSAKA Converter, which removes a three-phase transformer, is described in this paper. The converter switches once in every half cycle of an AC commercial power source. Therefore, it can solve many problems caused by the high frequency operation. The proposed converter achieves the soft-switching operation and the EMI noise can be reduced. In this circuit, the resonant capacitor, which is used for the soft-switching operation, is utilized for the improvement of an input current waveform. To achieve low cost and compact structure, non-isolated OSAKA converter removes a three-phase transformer of the OSAKA converter. By removing the three-phase transformer, three phase currents occur the interferences each other. To avoid the interference, a new switching method for non-isolated OSAKA converter is preposed. The converter can be constructed by the low-speed large power devices. The converter generates the low distorted input current waveforms with high power factor.

  • PDF

Non-isolated Boost Charger for the Li-Ion Batteries Suitable for Fuel Cell Powered Laptop Computers

  • Sang, Nguyen Van;Choi, Woojin;Kim, Dae-Wook
    • Journal of Power Electronics
    • /
    • v.13 no.1
    • /
    • pp.31-39
    • /
    • 2013
  • The conventional non-isolated boost converter has some drawbacks such as poor dynamic performance and a discontinuous output current, which make it unsuitable for battery charging applications. In spite of its compactness and lightness, it is not preferred as a charger of portable electronic devices. In this paper, a non-isolated boost converter topology for Li-ion batteries suitable for fuel cell powered laptop computers is proposed and analyzed. The proposed converter has an additional inductor at the output to make a continuous output current. This feature makes it suitable for charger applications by eliminating the disadvantages of the conventional non-isolated boost converter mentioned above. A prototype of the proposed converter is built for the Li-ion battery charger of a laptop computer to prove the validity and advantages of the proposed topology.

Two-Switch Non-Isolated Step-Up DC-DC Converter

  • Nguyen, Minh-Khai;Choi, Youn-Ok;Cho, Geum-Bae;Lim, Young-Cheol
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.651-661
    • /
    • 2018
  • This paper suggests a new non-isolated high voltage gain DC-DC converter with two switches. The proposed two-switch converter has the following characteristics: a high voltage gain, a continuous input current with a small ripple, a reduction in the size of the inductor, and a simple circuit with only a few elements. A theoretical analysis, guidelines for parameter selection, and a comparison with conventional non-isolated high step-up converters are presented. A prototype of 250 W is set up to demonstrate the correctness of the proposed converter. Results obtained from simulations and experiments are presented.

A Non-Isolated Boost Charger for the Li-Ion Battery Suitable for the Fuel Cell Powered Laptop Computer

  • Nguyen, Van Sang;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.177-178
    • /
    • 2012
  • In spite of its compactness and lightness, conventioan boost converter is not preferred for the charge applications. In this paper, a non-isolated boost converter topology for the Li-Ion battery suitable for fuel cell powered laptop computer is proposed and analyzed. The proposed converter has an additional inductor at the output to reduce the output ripple current and voltage. This feature makes it suitable for the charger application by eliminating the disadvantages of the conventional non-isolated boost converter mentioned above.

  • PDF

A Novel Non-Isolated Buck Boost Converter with High Voltage Gain and High Efficiency Characteristics (고변압비와 고효율 특성을 가진 새로운 비절연형 벅부스트 컨버터)

  • Tran, Manh Tuan;Amin, Saghir;Choi, Woojin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.5
    • /
    • pp.319-326
    • /
    • 2019
  • The use of high-voltage gain converters is essential for distributed power generation systems with renewable energy sources, such as fuel and solar cells, due to their low-voltage characteristics. In this study, a novel high-voltage gain non-isolated buck boost converter topology is proposed to cope with the need of a high-voltage conversion ratio without the transformer for the renewable energy sources. Given that the proposed topology utilizes the cascode structure, the voltage gain and the efficiency are higher than those of other conventional non-isolated converters. To demonstrate the feasibility of the proposed topology, the operation principle is presented, and the steady-state characteristics are analyzed in detail. The validity of the proposed converter is verified by experiments with a 400 W prototype converter.

A Novel Non-Isolated DC-DC Converter with High Efficiency and High Step-Up Voltage Gain (고효율 및 고변압비를 가진 새로운 비절연형 컨버터)

  • Amin, Saghir;Tran, Manh Tuan;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.11-13
    • /
    • 2019
  • This paper proposes a novel high step-up non-isolated DC-DC converter, suitable for regulating dc bus in various inherent low voltage micro sources especially for photovoltaic (PV) and fuel cell sources. This novel high voltage Non-isolated Boost DC-DC converter topology is best replacement, where high voltage conversion ratio is required without the transformer and also need continuous input current. Since the proposed topology utilizes the stack-based structure, the voltage gain, and the efficiency are higher than other conventional non-isolated converters. Switches in this topology is easier to control since its control signal is grounding reference. Also, there is no need of extra gate driver and extra power supply for driver circuit, which reduces the cost and size of system. In order to show the feasibility and practicality of the proposed topology principle operation, steady state analysis and simulation result is presented and analyzed in detail. To verify the performance of proposed converter and theoretical analysis 360W laboratory prototype is implemented.

  • PDF

Non-Isolated Unidirectional Three-Port Cuk-Cuk Converter for Fuel Cell/Solar PV Systems

  • Chandrasekar, Balaji;Chellammal, N.;Nallamothu, Bhargavi
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1278-1288
    • /
    • 2019
  • A DC-DC Non-Isolated Three-Port Cuk-Cuk (NI-TPCC) converter for interfacing renewable energy sources (RESs) such as Fuel Cell (FC) and Photovoltaic (PV) energy with a DC load is presented in this paper. It features single-stage power conversion from both of the input ports to the load port. The proposed NI-TPCC converter is designed based on the classical Cuk converter. The operational modes and power flow are analyzed in the continuous conduction mode (CCM), and the relationships among the port voltages are derived. Continuous currents in all three ports with less ripple enhance the performance of a fuel cell and its operating life. Furthermore, the output inductor is shared with both of the input ports, which reduces the number of active and passive components. The effectiveness of the designed NI-TPCC converter has been validated through simulation and experimental results.

An Improved Non-Isolated 3-Level High Step-Up Boost Converter (개선된 비절연형 3-레벨 고승압 부스트 컨버터)

  • Kim, Su-Han;Cha, Hon-Nyong;Kim, Heung-Geun;Choi, Byung-Cho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.342-348
    • /
    • 2013
  • In this paper, an improved non-isolated 3-level high step-up boost converter is proposed. By using the well known duality principle, the proposed converter is derived from two-phase buck converter. Compared with the traditional boost converter and 3-level boost converter, the proposed converter can obtain very high voltage conversion ratio and the voltage stress of switching devices and diodes is only 1/4 of the output voltage. A 1 kW prototype converter is built and tested to verify performances of the proposed converter.

A Non-Isolated 3-Level High Step-Up Boost Converter With Output Voltage Balancing (출력 전압 밸런싱 기능을 가진 비절연형 3-레벨 고승압 부스트 컨버터)

  • Yun, Song-Hyun;Kang, Hyemin;Cha, Honnyong;Kim, Heung-Geun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.5
    • /
    • pp.464-470
    • /
    • 2015
  • In this paper, a non-isolated three-level high step-up boost converter with output voltage balancing is proposed. By adding one extra inductor to the conventional three-level boost converter, the proposed converter is derived. Compared with the traditional boost converter and the three-level boost converter, the proposed converter can obtain very high voltage conversion ratio, and the voltage and current stress of switching devices and diodes are reduced. A 2.7 kW prototype converter is built and tested to verify performances of the proposed converter.

Two-Inductor Non-Isolated DC-DC Converter with High Step-Up Voltage Gain

  • Lee, Sze Sing;Chu, Bing;Lim, Chee Shen;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1069-1073
    • /
    • 2019
  • In this paper, an alternative non-isolated DC-DC converter with a high voltage boosting capability is proposed. Two inductors are used and one of them has its flux linkage increases during its charging period to achieve a high step-up voltage gain. Among the three integrated capacitors, one portrays the partial characteristic of the switched-capacitor technique, while the other two are connected in series across the load. With the two switches controlled using the same duty cycle, the proposed topology demonstrates the merits of a higher and wider range of step-up voltage gain when compared with recent topologies. In addition, a reduction in loss is induced and a higher efficiency is ensured with all the voltage stresses constrained within the output voltage. Operation of the proposed converter is analyzed and validated through experimental results obtained with a prototype.