• Title/Summary/Keyword: Non-ideal power

Search Result 73, Processing Time 0.023 seconds

LCL Filter Design Method for Grid-Connected PWM-VSC

  • Majic, Goran;Despalatovic, Marin;Terzic, Bozo
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1945-1954
    • /
    • 2017
  • In recent years, several LCL filter design methods for different converter topologies have been published, many of which use analytical expressions to calculate the ideal converter AC voltage harmonic spectrum. This paper presents the LCL filter design methodology but the focus is on presentation and validation of the non-iterative filter design method for a grid-connected three-phase two-level PWM-VSC. The developed method can be adapted for different converter topologies and PWM algorithms. Furthermore, as a starting point for the design procedure, only the range of PWM carrier frequencies is required instead of an exact value. System nonlinearities, usually omitted from analysis have a significant influence on VSC AC voltage harmonic spectrum. In order to achieve better accuracy of the proposed procedure, the system nonlinear model is incorporated into the method. Optimal filter parameters are determined using the novel cost function based on higher frequency losses of the filter. An example of LCL filter design for a 40 kVA grid-connected PWM-VSC has been presented. Obtained results have been used to construct the corresponding laboratory setup and measurements have been performed to verify the proposed method.

Analysis on Position Estimation Performance according to Injection Frequency in Carrier-Based Sensorless Operation (반송파 기반 센서리스 운전에서 주입하는 신호의 주파수에 따른 위치 추정 성능 분석)

  • Hwang, Chae-Eun;Lee, Younggi;Sul, Seung-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.2
    • /
    • pp.139-146
    • /
    • 2018
  • This work puts forward a theoretical analysis on position estimation performance of interior permanent magnet synchronous motor (IPMSM) according to the injection frequency in carrier-based sensorless operation. The effects of spatial harmonics on inductance and voltage distortion due to the nonideal characteristics of IPMSM and inverter are examined as factors influencing the position estimation performance. Furthermore, the position estimation performance is analyzed by calculating the current at the switching instant in several operating conditions. In summary, the half switching frequency injection is more robust to the nonideal characteristics of IPMSM, especially with light load condition. The validity of the analysis is verified by the simulation and experimental results.

MODELING AND PI CONTROL OF DIESEL APU FOR SERIES HYBRID ELECTRIC VEHICLES

  • HE B.;OUYANG M.;LU L.
    • International Journal of Automotive Technology
    • /
    • v.7 no.1
    • /
    • pp.91-99
    • /
    • 2006
  • The diesel Auxiliary Power Unit (APU) for vehicle applications is a complex nonlinear system. For the purpose of this paper presents a dynamic average model of the whole system in an entirely physical way, which accounts for the non-ideal behavior of the diode rectifier, the nonlinear phenomena of generator-rectifier set in an elegant way, and also the dynamics of the dc load and diesel engine. Simulation results show the accuracy of the model. Based on the average model, a simple PI control scheme is proposed for the multivariable system, which includes the steps of model linearization, separate PI controller design with robust tuning rules, stability verification of the overall system by considering it as an uncertain one. Finally it is tested on a detailed switching model and good performances are shown for both set-point following and disturbance rejection.

Analysis of Estimation Errors in Rotor Position for a Sensorless Control System Using a PMSM

  • Park, Yong-Soon;Sul, Seung-Ki;Ji, Jun-Keun;Park, Young-Jae
    • Journal of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.748-757
    • /
    • 2012
  • In a sensorless control system with a Permanent Magnet Synchronous Motor (PMSM), the angular position of the rotor flux can be estimated by a voltage equation. However, the estimated angle may be inaccurate due to various causes. In this paper, it was comprehensively analyzed how various causes affect the angle error. As a result of the analysis, an error equation intuitively describing these relationships was derived. The parameter errors of a PMSM and the non-ideal properties of the driving system were identified as error-causing factors. To demonstrate the validity of the error equation, PMSMs were tested at various operating points. The variations in angle errors could be well explained with the error equation.

Control of Grid-Connected Inverters Using Adaptive Repetitive and Proportional Resonant Schemes

  • Abusara, Mohammad A.;Sharkh, Suleiman M.;Zanchetta, Pericle
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.518-529
    • /
    • 2015
  • Repetitive and proportional-resonant controllers can effectively reject grid harmonics in grid-connected inverters because of their high gains at the fundamental frequency and the corresponding harmonics. However, the performances of these controllers can seriously deteriorate if the grid frequency deviates from its nominal value. Non-ideal proportional-resonant controllers provide better immunity to variations in grid frequency by widening resonant peaks at the expense of reducing the gains of the peaks, which reduces the effectiveness of the controller. This paper proposes a repetitive control scheme for grid-connected inverters that can track changes in grid frequencies and keep resonant peaks lined up with grid frequency harmonics. The proposed controller is implemented using a digital signal processor. Simulation and practical results are presented to demonstrate the controller capabilities. Results show that the performance of the proposed controller is superior to that of a proportional-resonant controller.

A Novel Parameter Extraction Method for the Solar Cell Model (새로운 태양전지 모델의 파라미터 추출법)

  • Kim, Wook;Kim, Sang-Hyun;Lee, Jong-Hak;Choi, Woo-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.372-378
    • /
    • 2009
  • With the increase in capacity of photovoltaic generation systems, studies are being actively conducted to improve system efficiency. In order to develop the high performance photovoltaic power system it is required to understand the physical characteristics of the solar cell. However, solar cell models have a non-linear form with many parameters entangled and conventional methods suggested to extract the parameters of the solar cell model require some kind of assumptions, which accompanies the calculation errors, thereby lowering the accuracy of the model. Therefore, in this paper a novel method is proposed to calculate the ideality factor and reverse saturation current of the solar cell from the I-V curve measured and announced by solar cell manufacturers, derive the ideal I-V curve, and then extract the series and shunt resistances value from the difference between the ideal and measured I-V curve. Also, validity of the proposed method is demonstrated by calculating the correlation between I-V curve based on modeling parameters and I-V curve actually measured through least squares method.

Optimization of an extra vessel electromagnetic pump for Lead-Bismuth eutectic coolant circulation in a non-refueling full-life small reactor

  • Kang, Tae Uk;Kwak, Jae Sik;Kim, Hee Reyoung
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3919-3927
    • /
    • 2022
  • This study presents an optimal design of the coolant system of a non-refueling full-life small reactor by analyzing the space-integrated geometrical and electromagnetic variables of an extra vessel electromagnetic pump (EVEMP) for the circulation of a lead-bismuth eutectic (LBE) coolant. The EVEMP is an ideal alternative to the thermal-hydraulic system of non-refueling full-life micro reactors as it possesses no internal structures, such as impellors or sealing structures, for the transportation of LBE. Typically, the LBE passes through the annular flow channel of a reactor, is cooled by the heat exchanger, and then circulates back to the EVEMP flow channel. This thermal-hydraulic flow method is similar to natural circulation, which enhances thermal efficiency, while providing a golden time for cooling cores in the event of an emergency. When the forced circulation technology of the EVEMP was applied, the non-refueling full-life micro reactor achieve an output power of 60 MWt, which is higher than that achievable via the natural circulation method (30 MWt). Accordingly, an optimized EVEMP for Micro URANUS with a flow rate of 4196 kg/s and developed pressure of 73 kPa under a working temperature of 250 ℃ was designed.

A Novel Phase Locked Loop for Grid-Connected Converters under Non-Ideal Grid Conditions

  • Yang, Long-Yue;Wang, Chong-Lin;Liu, Jian-Hua;Jia, Chen-Xi
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.216-226
    • /
    • 2015
  • Grid synchronization is one of the key techniques for the grid-connected power converters used in distributed power generation systems. In order to achieve fast and accurate grid synchronization, a new phase locked loop (PLL) is proposed on the basis of the complex filter matrixes (CFM) orthogonal signal generator (OSG) crossing-decoupling method. By combining first-order complex filters with relation matrixes of positive and negative sequence voltage components, the OSG is designed to extract specific frequency orthogonal signals. Then, the OSG mathematical model is built in the frequency-domain and time-domain to analyze the spectral characteristics. Moreover, a crossing-decoupling method is suggested to decouple the fundamental voltage. From the eigenvalue analysis point of view, the stability and dynamic performance of the new PLL method is evaluated. Meanwhile, the digital implementation method is also provided. Finally, the effectiveness of the proposed method is verified by experiments under unbalanced and distorted grid voltage conditions.

Operation Characteristic Analysis of a Comb Actuator due to a Anisotropy Variation in RIE Etching (RIE 식각시 발생하는 비등방도 변화에 따른 머리빗형 액튜에이터의 동작 특성 분석)

  • Kim, Bong-Soo;Park, Ho-Jun;Pak, Jung-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.5
    • /
    • pp.368-376
    • /
    • 1999
  • This paper predicts the changes in the spring constant, the resonant frequency, the electrostatic force, and the displacement of a resonant structure due to non-ideal anisotropic RIE etching process. First, a $6\;{\mu}m$ thick polysilicon was etched by RIE and the anisotropy of the etched structure was measured as a function of a RF power, a $Cl_2$ flow rate and a chamber pressure. In the experimental results, an anisotropy was decreased as the RF power, the $Cl_2$ flow rate, or the chamber pressure was increased. A comb actuator's operation characteristic was predicted depending on the anisotropy variations in RIE etching. Comb actuators with three different support beam structures were investigated : fixed-fixed, crab-leg, and double crab-leg. As the RIE etch anisotropy becomes non-ideal, i.e. the cross section becomes rather a trapezoidal than a rectangular shape, it decreases spring constant, resonant frequency and electrostatic force of a comb actuator but it increases the displacement of the mass. Among the three structures, the comb actuator with double crab-leg support beams is more influenced by anisotropy variation in RIE etch than other two.

  • PDF

NSGA-II Technique for Multi-objective Generation Dispatch of Thermal Generators with Nonsmooth Fuel Cost Functions

  • Rajkumar, M.;Mahadevan, K.;Kannan, S.;Baskar, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.423-432
    • /
    • 2014
  • Non-dominated Sorting Genetic Algorithm-II (NSGA-II) is applied for solving Combined Economic Emission Dispatch (CEED) problem with valve-point loading of thermal generators. This CEED problem with valve-point loading is a nonlinear, constrained multi-objective optimization problem, with power balance and generator capacity constraints. The valve-point loading introduce ripples in the input-output characteristics of generating units and make the CEED problem as a nonsmooth optimization problem. To validate its effectiveness of NSGA-II, two benchmark test systems, IEEE 30-bus and IEEE 118-bus systems are considered. To compare the Pareto-front obtained using NSGA-II, reference Pareto-front is generated using multiple runs of Real Coded Genetic Algorithm (RCGA) with weighted sum of objectives. Comparison with other optimization techniques showed the superiority of the NSGA-II approach and confirmed its potential for solving the CEED problem. Numerical results show that NSGA-II algorithm can provide Pareto-front in a single run with good diversity and convergence. An approach based on Technique for Ordering Preferences by Similarity to Ideal Solution (TOPSIS) is applied on non-dominated solutions obtained to determine Best Compromise Solution (BCS).