• Title/Summary/Keyword: Non-ideal power

Search Result 73, Processing Time 0.025 seconds

A Study on Women's Underwear Structures by Ideal Beauty - Focused on the late period of 20th century - (이상미에 따른 여성 속옷 구성에 관한 연구(2) - 20세기 후기를 중심으로-)

  • 김지연;전혜정
    • Journal of the Korean Society of Costume
    • /
    • v.53 no.5
    • /
    • pp.79-95
    • /
    • 2003
  • The purpose of this study is firstly to survey the social and cultural background of 20th century and women´s status, and to identify what the ideal body is like and what the elements of outer garment and underwear are and the techniques to incarnate the ideal beauty. Various papers are referenced for theoretical study and the elements and techniques of underwear are analyzed based on photographical materials. This paper concludes as follows. In 1960´s, ideal beauty was small bust, long legs, which showed extremely slim Mini-skirt look. Thinly or no padded brassiere were worn for small bust, and pants-style short panty girdles were popular as they used to wear pants frequently. Lycra replaced all the closures, bones, seams and gave freedom with light weight. In 1970´s, a natural human body without sex specific was in vogue. Therefore, the non-structural knits without a pad or lining or the shirts dress were widespread for a Natural look and the naturally molded brassiere or girdles were worn as the underwears. In 1980´s, the women with powerful muscle appear which emphasized liveliness and healthfulness. The body conscious represented by wide shoulder, plump breast, accented waist, small hips, and long legs has been embodied. Outer garments emphasized women power and healthy beauty with Power suit and Form-fitting style, and underwears made the breast plump with padded brassiere and emphasized waist and hips with waspie. In 1990´s, ideal beauty was slim body with big bust and the outer garments emphasized body line of women with Hourglass silhouette. Push-up bra which emphasizes the valley of breast and supports the breast upward and the control tights for slim waist, flat abdomen, small hips, and long and slim legs have been useful as underwears. Multi-functional micro-fiber has been ideal for sculpting women body.

ON STRONGLY 1-ABSORBING PRIMARY IDEALS OF COMMUTATIVE RINGS

  • Almahdi, Fuad Ali Ahmed;Bouba, El Mehdi;Koam, Ali N.A.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.5
    • /
    • pp.1205-1213
    • /
    • 2020
  • Let R be a commutative ring with 1 ≠ 0. In this paper, we introduce a subclass of the class of 1-absorbing primary ideals called the class of strongly 1-absorbing primary ideals. A proper ideal I of R is called strongly 1-absorbing primary if whenever nonunit elements a, b, c ∈ R and abc ∈ I, then ab ∈ I or c ∈ ${\sqrt{0}}$. Firstly, we investigate basic properties of strongly 1-absorbing primary ideals. Hence, we use strongly 1-absorbing primary ideals to characterize rings with exactly one prime ideal (the UN-rings) and local rings with exactly one non maximal prime ideal. Many other results are given to disclose the relations between this new concept and others that already exist. Namely, the prime ideals, the primary ideals and the 1-absorbing primary ideals. In the end of this paper, we give an idea about some strongly 1-absorbing primary ideals of the quotient rings, the polynomial rings, and the power series rings.

The Optimal Design of High Voltage Non Punch Through IGBT and Field Stop IGBT (고전압 Non Punch Through IGBT 및 Field Stop IGBT 최적화 설계에 관한 연구)

  • Kang, Ey Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.4
    • /
    • pp.214-217
    • /
    • 2017
  • An IGBT (insulated gate bipolar transistor) device has an excellent current-conducting capability. It has been widely employed as a switching device to use in power supplies, converters, solar inverters, and household appliances or the like, designed to handle high power. The aim with IGBT is to meet the requirements for use in ideal power semiconductor devices with a high breakdown voltage, an on-state voltage drop, a high switching speed, and high reliability for power-device applications. In general, the concentration of the drift region decreases when the breakdown voltage increases, but the on-resistance and other characteristics should be reduced to improve the breakdown voltage and on-state voltage drop characteristics by optimizing the design and structure changes. In this paper, using the T-CAD, we designed the NPT-IGBT (non punch-through IGBT) and FS-IGBT (field stop IGBT) and analyzed the electrical characteristics of those devices. Our analysis of the electrical characteristics showed that the FS-IGBT was superior to the NPT-IGBT in terms of the on-state voltage drop.

Optimal Design for Hybrid Active Power Filter Using Particle Swarm Optimization

  • Alloui, Nada;Fetha, Cherif
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.3
    • /
    • pp.129-135
    • /
    • 2017
  • This paper introduces a design and a simulation of a hybrid active power filter (HAPF) for harmonics reduction given an ideal supply source. The synchronous reference frame method has been used here to identify the reference currents. The proposed HAPF uses a new artificial- intelligence technique called Particle Swarm Optimization (PSO) for tuning the parameters of a proportional and integral controller called PI-PSO. The PI-PSO controller is used to archive optimality for the DC-link voltage of the HAPF-inverter. The hysteresis non-linear current control method is used in this approach to compare the extracted reference and the actual currents in order to generate the pulse gate required for the HAPF. Results obtained by simulations with Matlab/Simuling show that the proposed approach is very flexible and effective for eliminating harmonic currents generated by the non-linear load with the HAPF based PSO tuning.

Frequency Synchronization of Three-Phase Grid-Connected Inverters Controlled as Current Supplies

  • Fu, Zhenbin;Feng, Zhihua;Chen, Xi;Zheng, Xinxin;Yin, Jing
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1347-1356
    • /
    • 2018
  • In a three-phase system, three-phase AC signals can be translated into two-phase DC signals through a coordinate transformation. Thus, the PI regulator can realize a zero steady-state error for the DC signals. In the control of a three-phase grid-connected inverter, the phase angle of grid is normally detected by a phase-locked loop (PLL) and takes part in a coordinate transformation. A novel control strategy for a three-phase grid-connected inverter with a frequency-locked loop (FLL) based on coordinate transformation is proposed in this paper. The inverter is controlled as a current supply. The grid angle, which takes part in the coordinate transformation, is replaced by a periodic linear changing angle from $-{\pi}$ to ${\pi}$. The changing angle has the same frequency but a different phase than the grid angle. The frequency of the changing angle tracks the grid frequency by the negative feedback of the reactive power, which forms a FLL. The control strategy applies to non-ideal grids and it is a lot simpler than the control strategies with a PLL that are applied to non-ideal grids. The structure of the FLL is established. The principle and advantages of the proposed control strategy are discussed. The theoretical analysis is confirmed by experimental results.

Analog active valve control design for non-linear semi-active resetable devices

  • Rodgers, Geoffrey W.;Chase, J. Geoffrey;Corman, Sylvain
    • Smart Structures and Systems
    • /
    • v.19 no.5
    • /
    • pp.487-497
    • /
    • 2017
  • Semi-active devices use the building's own motion to produce resistive forces and are thus strictly dissipative and require little power. Devices that independently control the binary open/closed valve state can enable novel device hysteresis loops that were not previously possible. However, some device hysteresis loops cannot be obtained without active analog valve control allowing slower, controlled release of stored energy, and is presents an ongoing limitation in obtaining the full range of possibilities offered by these devices. This in silico study develops a proportional-derivative feedback control law using a validated nonlinear device model to track an ideal diamond-shaped force-displacement response profile using active analog valve control. It is validated by comparison to the ideal shape for both sinusoidal and random seismic input motions. Structural application specific spectral analysis compares the performance for the non-linear, actively controlled case to those obtained with an ideal, linear model to validate that the potential performance will be retained when considering realistic nonlinear behaviour and the designed valve control approach. Results show tracking of the device force-displacement loop to within 3-5% of the desired ideal curve. Valve delay, rather than control law design, is the primary limiting factor, and analysis indicates a ratio of valve delay to structural period must be 1/10 or smaller to ensure adequate tracking, relating valve performance to structural period and overall device performance under control. Overall, the results show that active analog feedback control of energy release in these devices can significantly increase the range of resetable, valve-controlled semi-active device performance and hysteresis loops, in turn increasing their performance envelop and application space.

A Single-Input Single-Output Approach by using Minor-Loop Voltage Feedback Compensation with Modified SPWM Technique for Three-Phase AC-DC Buck Converter

  • Alias, Azrita;Rahim, Nasrudin Abd.;Hussain, Mohamed Azlan
    • Journal of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.829-840
    • /
    • 2013
  • The modified sinusoidal pulse-width modulation (SPWM) is one of the PWM techniques used in three-phase AC-DC buck converters. The modified SPWM works without the current sensor (the converter is current sensorless), improves production of sinusoidal AC current, enables obtainment of near-unity power factor, and controls output voltage through modulation gain (ranging from 0 to 1). The main problem of the modified SPWM is the huge starting current and voltage (during transient) that results from a large step change from the reference voltage. When the load changes, the output voltage significantly drops (through switching losses and non-ideal converter elements). The single-input single-output (SISO) approach with minor-loop voltage feedback controller presented here overcomes this problem. This approach is created on a theoretical linear model and verified by discrete-model simulation on MATLAB/Simulink. The capability and effectiveness of the SISO approach in compensating start-up current/voltage and in achieving zero steady-state error were tested for transient cases with step-changed load and step-changed reference voltage for linear and non-linear loads. Tests were done to analyze the transient performance against various controller gains. An experiment prototype was also developed for verification.

Urban Rail Power Facilities on-site Implementation of an Integrated System Diagnosis (도시철도 전력설비 상태진단 통합시스템 현장구현)

  • Im, Hyeong-Gil;Lee, Byung-Du;Kim, Yong-Duk;Jang, Soon-Ho
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2015-2020
    • /
    • 2011
  • Key set the current non-urban rail power failure of equipment to operate the railway will generate a lot of problems. I know in advance the ideal of power equipment to prevent the failure to derive an efficient replacement cycle for the power equipment monitoring and diagnosis of the condition can become necessary to develop a system. In order to determine the status of the power plant during operation and behavior of the partial discharge current state data, regular monitoring and inspection requirements also stamp the basic current, voltage, temperature and humidity should be identified.

  • PDF

Dynamic Voltage and Frequency Scaling for Power-Constrained Design using Process Voltage and Temperature Sensor Circuits

  • Nan, Haiqing;Kim, Kyung-Ki;Wang, Wei;Choi, Ken
    • Journal of Information Processing Systems
    • /
    • v.7 no.1
    • /
    • pp.93-102
    • /
    • 2011
  • In deeply scaled CMOS technologies, two major non-ideal factors are threatening the survival of the CMOS; i) PVT (process, voltage, and temperature) variations and ii) leakage power consumption. In this paper, we propose a novel post-silicon tuning methodology to scale optimum voltage and frequency "dynamically". The proposed design technique will use our PVT sensor circuits to monitor the variations and based on the monitored variation data, voltage and frequency will be compensated "automatically". During the compensation process, supply voltage is dynamically adjusted to guarantee the minimum total power consumption without violating the frequency requirement. The simulation results show that the proposed technique can reduce the total power by 85% and the static power by 53% on average for the selected ISCAS'85 benchmark circuits with 45 nm CMOS technology compared to the results of the traditional PVT compensation method.

A Fast Sorting Strategy Based on a Two-way Merge Sort for Balancing the Capacitor Voltages in Modular Multilevel Converters

  • Zhao, Fangzhou;Xiao, Guochun;Liu, Min;Yang, Daoshu
    • Journal of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.346-357
    • /
    • 2017
  • The Modular Multilevel Converter (MMC) is particularly attractive for medium and high power applications such as High-Voltage Direct Current (HVDC) systems. In order to reach a high voltage, the number of cascaded submodules (SMs) is generally very large. Thus, in the applications with hundreds or even thousands of SMs such as MMC-HVDCs, the sorting algorithm of the conventional voltage balancing strategy is extremely slow. This complicates the controller design and increases the hardware cost tremendously. This paper presents a Two-Way Merge Sort (TWMS) strategy based on the prediction of the capacitor voltages under ideal conditions. It also proposes an innovative Insertion Sort Correction for the TWMS (ISC-TWMS) to solve issues in practical engineering under non-ideal conditions. The proposed sorting methods are combined with the features of the MMC-HVDC control strategy, which significantly accelerates the sorting process and reduces the implementation efforts. In comparison with the commonly used quicksort algorithm, it saves at least two-thirds of the sorting execution time in one arm with 100 SMs, and saves more with a higher number of SMs. A 501-level MMC-HVDC simulation model in PSCAD/EMTDC has been built to verify the validity of the proposed strategies. The fast speed and high efficiency of the algorithms are demonstrated by experiments with a DSP controller (TMS320F28335).