• Title/Summary/Keyword: Non-homogeneity

Search Result 231, Processing Time 0.024 seconds

Relationship Between Accidents and Non-Homogeneous Geometrics: Main Line Sections on Interstates (기하구조의 비동질성을 고려한 교통사고와의 관계: 고속도로 본선구간을 중심으로)

  • Park, Min Ho;Noh, Kwan Sub;Kim, Jongmin
    • Journal of Korean Society of Transportation
    • /
    • v.32 no.2
    • /
    • pp.170-178
    • /
    • 2014
  • Until now, several research on the relationship of traffic crash occurrences and geometric had been conducted and revealed that projects of road alignment, geometric improvement and hazardous segment selection reduced the number of accidents and accident severities. However, such variables did not consider the non-homogeneous characteristics of roadway segments due to the difficulty of data collection, which results in under-estimation of the standard error affecting the overall modeling goodness-of-fit. This study highlights the importance of non-homogeneity by looking at the effect of the non-homogeneous geometric variables through the modeling process. The model delivers meaningful results when using some geometric variables without relevant geometrics' variables.

Magneto-thermo-elastic response of a rotating functionally graded cylinder

  • Hosseini, Mohammad;Dini, Ali
    • Structural Engineering and Mechanics
    • /
    • v.56 no.1
    • /
    • pp.137-156
    • /
    • 2015
  • In this paper, an analytical solution of displacement, strain and stress field for rotating thick-walled cylinder made of functionally graded material subjected to the uniform external magnetic field and thermal field in plane strain state has been studied. Stress, strain and displacement field as a function of radial coordinates considering magneto-thermo-elasticity are derived analytically. According to the Maxwell electro-dynamic equations, Lorentz force in term of displacement is obtained in cylindrical coordinates. Also, symmetric temperature distribution along the thickness of hollow cylinder is obtained by solving Fourier heat transfer equation in cylindrical coordinates. Using equation of equilibrium and thermo-mechanical constitutive equations associated with Lorentz force, a second-order inhomogeneous differential equation in term of displacement is obtained and will be solved analytically. Except Poisson's ratio, other mechanical properties such as elasticity modulus, density, magnetic permeability coefficient, heat conduction coefficient and thermal expansion coefficient are assumed to vary through the thickness according to a power law. In results analysis, non-homogeneity parameter has been chosen arbitrary and inner and outer surface of cylinder are assumed to be rich metal and rich ceramic, respectively. The effect of rotation, thermal, magnetic field and non-homogeneity parameter of functionally graded material which indicates percentages of cylinder's constituents are studied on displacement, Von Mises equivalent stress and Von Mises equivalent strain fields.

Hybrid design method for air-core solenoid with axial homogeneity

  • Huang, Li;Lee, Sangjin;Choi, Sukjin
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.1
    • /
    • pp.50-54
    • /
    • 2016
  • In this paper, a hybrid method is proposed to design an air-core superconducting solenoid system for 6 T axial uniform magnetic field using Niobium Titanium (NbTi) superconducting wire. In order to minimize the volume of conductor, the hybrid optimization method including a linear programming and a nonlinear programming was adopted. The feasible space of solenoid is divided by several grids and the magnetic field at target point is approximated by the sum of magnetic field generated by an ideal current loop at the center of each grid. Using the linear programming, a global optimal current distribution in the feasible space can be indicated by non-zero current grids. Furthermore the clusters of the non-zero current grids also give the information of probable solenoids in the feasible space, such as the number, the shape, and so on. Applying these probable solenoids as the initial model, the final practical configuration of solenoids with integer layers can be obtained by the nonlinear programming. The design result illustrates the efficiency and the flexibility of the hybrid method. And this method can also be used for the magnet design which is required the high homogeneity within several ppm (parts per million).

Powder Injection Molding Technique of Fabricating Cemented Tungsten Carbide Balls for Milling and Dispersing Nano-Powder (나노분말 분쇄 및 분산용 고성능 초경합금 볼의 제조를 위한 분말사출성형 공법)

  • Chung, Seong-Taek;Cho, Ju-Hyun;Lee, Min-Cheol;Kwon, Young-Sam;Joun, Man-Soo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.37-42
    • /
    • 2007
  • We present a powder injection molding technique of fabricating cemented tungsten carbide(WC) balls for milling and dispersing nano-powder in this paper. The conventional powder metallurgy approach is investigated to reveal its drawbacks of density non-homogeneity. New procedures of powder injection molding for the homogeneous high-precision WC balls, involving the binding process, powder injection molding process and sintering process, are presented in detail. Each process is investigated empirically and numerically to obtain its engineering information, which can used for process optimization.

  • PDF

A Study on the Safety in the Application of B.T.R method (B.T.R공법의 적용 시 안전에 관한 연구)

  • Lee, Won-Hui;Jeong, Gwang-Mo;Bang, Myeong-Seok;Lee, Sang-Heon
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2011.11a
    • /
    • pp.67-74
    • /
    • 2011
  • In this study numerical analysis was performed to evaluate the safety of Built-in Timbering Roof Type Tunnelling Method(BTR) which is one of non-opening tunnel construction methods. For the upgrading of analytical precision was applied the discretion method which can separately model reinforcing elements of BTR and the homogeneity analysis considering the area ratio of elements was performed to compare both results. Comparing the displacement in this study with that of the homogeneity method, the efficiency of the discretion method was verified.

  • PDF

Buckling of non-homogeneous orthotropic conical shells subjected to combined load

  • Sofiyev, A.H.;Kuruoglu, N.
    • Steel and Composite Structures
    • /
    • v.19 no.1
    • /
    • pp.1-19
    • /
    • 2015
  • The buckling analysis is presented for non-homogeneous (NH) orthotropic truncated conical shells subjected to combined loading of axial compression and external pressure. The governing equations have been obtained for the non-homogeneous orthotropic truncated conical shell, the material properties of which vary continuously in the thickness direction. By applying Superposition and Galerkin methods to the governing equations, the expressions for critical loads (axial, lateral, hydrostatic and combined) of non-homogeneous orthotropic truncated conical shells with simply supported boundary conditions are obtained. The results are verified by comparing the obtained values with those in the existing literature. Finally, the effects of non-homogeneity, material orthotropy, cone semi-vertex angle and other geometrical parameters on the values of the critical combined load have been studied.

Thermal flow intensity factor for non-homogeneous material subjected to unsteady thermal load (비정상 열 하중을 받는 이질재료의 열량 집중 계수 해석)

  • Kim, Gui-Seob
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.16 no.4
    • /
    • pp.26-34
    • /
    • 2008
  • This article provides a comprehensive treatment of cracks in non-homogeneous structural materials such as functionally graded materials (FGMs). It is assumed that the material properties depend only on the coordinate perpendicular to the crack surfaces and vary continuously along the crack faces. By using laminated composite plate model to simulate the material non-homogeneity, we present an algorithm for solving the system based on Laplace transform and Fourier transform techniques. Unlike earlier studies that considered certain assumed property distributions and a single crack problem, the current investigation studies multiple crack problem in the FGMs with arbitrarily varying material properties. As a numerical illustration, transient thermal flow intensity factors for a metal-ceramic joint specimen with a functionally graded interlayer subjected to sudden heating on its boundary are presented. The results obtained demonstrate that the present model is an efficient tool in the fracture analysis of non-homogeneous material with properties varying in the thickness direction.

  • PDF

Multi-Crack Problems for Non-homogeneous Material Subjected to Unsteady Thermal Load (비정상 열 하중을 받는 이질재료의 다중 크랙 문제)

  • Kim, Kui-Seob
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.1
    • /
    • pp.15-23
    • /
    • 2011
  • The purpose of this paper is to investigate the time behavior of a multiple crack problems. It is assumed that the medium contains cracks perpendicular to the crack surfaces, that the thermo-mechanical properties are continuous functions of the thickness coordinate. we use the laminated composite plate model to simulate the material non-homogeneity. By utilizing the Laplace transform and Fourier transform techniques, the multiple crack problems in the non-homogeneous medium is formulated. Singular integral equations are derived and solved to investigate the multiple crack problems. As a numerical illustration, transient thermal stress intensity factors(TSIFs) for a functionally graded material plate subjected to sudden heating on its boundary are provided. The variation in the TSIFs due to the change in material gradient and the crack position is studied.

Torsional surface waves in a non-homogeneous isotropic layer over viscoelastic half-space

  • Kakar, Rajneesh;Gupta, Kishan Chand
    • Interaction and multiscale mechanics
    • /
    • v.6 no.1
    • /
    • pp.1-14
    • /
    • 2013
  • The aim of this paper is to study the propagation of torsional surface waves in non-homogeneous isotropic layer of finite thickness placed over a homogeneous viscoelastic half-space, when both density and rigidity of the non-homogeneous medium are assumed to vary exponentially with depth. The frequency equations are obtained by using simple method of separation of variables. Further, it is seen that when viscoelastic parameter and non-homogeneity parameter is neglected, the dispersion equation gives the dispersion equations of Love waves in homogeneous, elastic and isotropic layer placed over homogeneous viscoelastic medium. The problem has been solved numerically and the effects of various inhomogeneities of the medium on torsional waves have been illustrated graphically.

Nonlinear and linear thermo-elastic analyses of a functionally graded spherical shell using the Lagrange strain tensor

  • Arefi, Mohammad;Zenkour, Ashraf M.
    • Smart Structures and Systems
    • /
    • v.19 no.1
    • /
    • pp.33-38
    • /
    • 2017
  • This research tries to present a nonlinear thermo-elastic solution for a functionally graded spherical shell subjected to mechanical and thermal loads. Geometric nonlinearity is considered using the Lagrange or finite strain tensor. Non-homogeneous material properties are considered based on a power function. Adomian's decomposition method is used for calculation of nonlinear results. Nonlinear results such as displacement can be evaluated for sphere in terms of different indexes of non-homogeneity. A comprehensive comparison between linear and nonlinear results and evaluation of the percentage of difference between them can be performed in this paper. The obtained results indicate that the improvement of the results due to usage of nonlinear analysis is depending on the non-homogeneous index.