• Title/Summary/Keyword: Non-foster impedance matching

Search Result 6, Processing Time 0.018 seconds

Signal-to-noise Ratio Improvement of a FM Antenna Using a Non-Foster Circuit (Non-Foster 회로를 이용한 FM 안테나의 신호 대 잡음비 개선)

  • Park, Hongwoo;Kahng, Sungtek;Kim, Hongjoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.2
    • /
    • pp.329-334
    • /
    • 2016
  • In this paper, we demonstrate a Non-Foster matching method for an electrically small antenna to improve the signal-to-noise ratio (SNR) of communication link. For the experiment, we used a general FM antenna whose resonance frequency is about 52-57 MHz and a floating type Linvill negative impedance converter(NIC)-based circuit as a Non-Foster matching element. By implementing the Non-Foster circuit to cover FM band, we can achieve a wide bandwidth matching covers 40-200 MHz. Our measurement shows 3-7 dB improvement of SNR for the same bandwidth though there are several spikes which means no improvement of SNR in the band.

NIC-Based Non-Foster Impedance Matching of a Resistively Loaded Vee Dipole Antenna (네거티브 임피던스 변환기에 기반을 둔 저항성 V 다이폴 안테나의 논 포스터 임피던스 매칭)

  • Yang, Hyemin;Kim, Kangwook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.7
    • /
    • pp.597-605
    • /
    • 2015
  • Negative impedance converter(NIC)-based non-Foster impedance matching is proposed for an electrically small antenna. The antenna considered in this work is a resistively loaded vee dipole(RVD) antenna, which has considerable reflection at the feed point because of its large negative input reactance. The non-Foster matching circuit built near the feed point consists of two-stage NIC circuit and a capacitor connected between the stages. The NIC is realized by using operational amplifiers(op-amps) and resistors. The circuit is designed by considering of the input impedance according to the finite open-loop gain of the practical NICs. The stability test of the impedance-matched RVD antenna is performed. The non- Foster matching circuit is implemented with the RVD antenna. The measured impedance demonstrates that the proposed non-Foster matching circuit effectively reduces the input reactance of the RVD antenna.

Negative Impedance Converter IC for Non-Foster Matching (비 포스터 정합을 위한 부성 임피던스 변환기 집적회로)

  • Park, Hongjong;Lee, Sangho;Park, Sunghwan;Kwon, Youngwoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.3
    • /
    • pp.283-291
    • /
    • 2015
  • In this paper, a negative impedance converter, the key element of non-Foster matching to enhance the bandwidth of matching high Q-factor passive element, is presented. Proposed negative impedance converter is implemented by the topology of Linvill's transistor negative impedance converter circuit. It is hard to forecast the operation of negative impedance circuit, because it is composed of gain element and positive feedback. Therefore the negative impedance circuit is implemented by hybrid type beforehand to check out the feasibility and it is designed by integrated circuit. The integrated circuit is fabricated by commercial $0.18{\mu}m$ SiGe BiCMOS process, and non-Foster matching is observed at 700~960 MHz band by cancelling the target reactance.

Non-Foster Matching Circuit Design to Improve VHF- and UHF-Band Small Antenna Impedance Matching (VHF 및 UHF 대역 소형 안테나 매칭성능 개선을 위한 비 포스터 정합회로 설계)

  • Go, Jong-Gyu;Chung, Jae-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.3
    • /
    • pp.159-166
    • /
    • 2018
  • Herein, a non-Foster matching circuit is designed to improve the impedance matching characteristics of small antennas in the VHF and UHF bands. The proposed non-Foster circuit is designed to operate with negative capacitance in a wide frequency band from 50 MHz to 1,000 MHz for use in various communication bands. To ensure the stability of the non-Foster circuit with conditional stability, the open-circuit stability condition of Linvill was satisfied, and the circuit was fabricated using the FR-4 substrate. The fabricated non-Foster circuit was combined with a small antenna to verify its performance by measuring the return loss and received power in the FM, DMB, and GSM bands. The measured return loss was improved from -6 dB to -30 dB, and the measured received power was improved from 0.5 dBm to 5.2 dBm.

Non-Foster Matching Circuit for Wideband Anti-Jamming Small GPS Antennas (광대역 항재밍 소형 GPS 안테나용 비 포스터 정합회로)

  • Ha, Sang-Gyu;Jung, Kyung-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.12
    • /
    • pp.1112-1115
    • /
    • 2016
  • Global Positioning System(GPS) is a useful system used in both civilian and military applications. However, the signal of GPS is susceptible to jamming attacks due to low receive sensitivity, since the signals come from the satellite located at over 20,000 km above the earth. In this paper, we have conducted a preceding research on a non-Foster matching circuit that efficiently matches an electrically ultra-small GPS antenna. Electrically Small Antennas(ESAs) are inefficient radiators and are difficult to match in wideband due to extremely high quality factor. In order to match small GPS antenna in wideband, a non-Foster matching circuit for a small GPS antenna was designed. A negative impedance converter circuit consisting of Linvill's cross-coupled pair transistors was fabricated and its stability was verified by the time-domain stability analysis. In addition, anechoic chamber measurements show that the non-Foster matching circuit for small GPS antenna can lead bore-sight gain improvement by more than 17 dB.

Investigation of Electrically Small Folded Slot Spherical Helix Magnetic Dipole Antenna (전기적 소형 Folded Slot Spherical Helix 자기 다이폴 안테나에 관한 연구)

  • Shin, Geonyeong;Kong, Myeongjun;Lee, Su-Hyeon;Yoon, Ick-Jae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.4
    • /
    • pp.261-268
    • /
    • 2017
  • In this paper, we propose an FSSH(Folded Slot Spherical Helix) magnetic dipole antenna with a form factor easy to build and study its radiation properties. The number of folded arms, the gap between them and the metal thickness are tuned to achieve relatively simple structure to realize whereas maintaining high radiation efficiency at an electrically small size. The proposed design shows wide radiation efficiency bandwidth and it is confirmed by circuit simulation that the non-Foster impedance matching techniques could be utilized for its practical use. The prototype of the proposed antenna is built with the aid of an SLS(Selective Laser Sintering) 3D printing technology. The measured result shows lower Q impedance characteristic due to high resistive loss of the copper tape joints.