• Title/Summary/Keyword: Non-fixed quantization

Search Result 4, Processing Time 0.015 seconds

Non-fixed Quantization Considering Entropy Encoding in HEVC (HEVC 엔트로피 부호화를 고려한 비균등 양자화 방법)

  • Gweon, Ryeong-Hee;Han, Woo-Jin;Lee, Yung-Lyul
    • Journal of Broadcast Engineering
    • /
    • v.16 no.6
    • /
    • pp.1036-1046
    • /
    • 2011
  • MPEG and VCEG have constituted a collaboration team called JCT-VC(Joint Collaborative Team on Video Coding) and have been developing HEVC(High Efficiency Video Coding) standard. All transform coefficients in a TU(Transform Unit) have been equally quantized according to the quantization and inverse quantization method which is used in HEVC standard. Such an equal quantization is not efficient because the transformed coefficients in the TU are not eqully distributed. Furthermore, the quantized coefficients which is positioned in later scanning order cannot be efficient due to the entropy scanning method. We suggest an algorithm that transform coefficients are quantized at different values according to the position in TU considering a scanning order of entropy encoding to improve the coding efficiency. The principle of this algorithm is that quantization and inverse quantization are carried out according to the scanning order which is in accordance with the statistical characteristic of distribution of quantized transform coefficients. The proposed algorithm shows on the average of 0.34% Y BD-rate compression rate improvement.

Robust Image Hashing for Tamper Detection Using Non-Negative Matrix Factorization

  • Tang, Zhenjun;Wang, Shuozhong;Zhang, Xinpeng;Wei, Weimin;Su, Shengjun
    • Journal of Ubiquitous Convergence Technology
    • /
    • v.2 no.1
    • /
    • pp.18-26
    • /
    • 2008
  • The invariance relation existing in the non-negative matrix factorization (NMF) is used for constructing robust image hashes in this work. The image is first re-scaled to a fixed size. Low-pass filtering is performed on the luminance component of the re-sized image to produce a normalized matrix. Entries in the normalized matrix are pseudo-randomly re-arranged under the control of a secret key to generate a secondary image. Non-negative matrix factorization is then performed on the secondary image. As the relation between most pairs of adjacent entries in the NMF's coefficient matrix is basically invariant to ordinary image processing, a coarse quantization scheme is devised to compress the extracted features contained in the coefficient matrix. The obtained binary elements are used to form the image hash after being scrambled based on another key. Similarity between hashes is measured by the Hamming distance. Experimental results show that the proposed scheme is robust against perceptually acceptable modifications to the image such as Gaussian filtering, moderate noise contamination, JPEG compression, re-scaling, and watermark embedding. Hashes of different images have very low collision probability. Tampering to local image areas can be detected by comparing the Hamming distance with a predetermined threshold, indicating the usefulness of the technique in digital forensics.

  • PDF

Xenograft Failure of Pulmonary Valved Conduit Cross-linked with Glutaraldehyde or Not Cross-linked in a Pig to Goat Implantation Model

  • Kim, Dong Jin;Kim, Yong Jin;Kim, Woong-Han;Kim, Soo-Hwan
    • Journal of Chest Surgery
    • /
    • v.45 no.5
    • /
    • pp.287-294
    • /
    • 2012
  • Background: Biologic valved grafts are important in cardiac surgery, and although several types of graft are currently available, most commercial xenografts tend to cause early disfiguration due to intimal proliferation and calcification. We studied the graft failure patterns on non-fixed and glutaraldehyde-fixed pulmonary xenograft in vivo animal experiment. Materials and Methods: Pulmonary valved conduits were obtained from the right ventricular outflow tract of eleven miniature pigs. The grafts were subjected to 2 different preservation methods; with or without glutaraldehyde fixation: glutaraldehyde fixation (n=7) and non-glutaraldehyde fixation (n=4). The processed explanted pulmonary valved grafts of miniature pig were then transplanted into eleven goats. Calcium quantization was achieved in all of the explanted xenograft, hemodynamic, histopathologic and radiologic evaluations were performed in the graft which the transplantation period was over 300 days (n=7). Results: Grafts treated with glutaraldehyde fixation had more calcification and conduit obstruction in mid-term period. Calcium deposition also appeared much higher in the glutaraldehyde treated graft compared to the non-glutaraldehyde treated graft (p<0.05). Conclusion: The present study suggests that xenografts prepared using glutaraldehyde fixation alone appeared to have severe calcification compared to the findings of non-glutaraldehyde treated xenografts and to be managed with proper anticalcification treatment and novel preservation methods. This experiment gives the useful basic chemical, histologic data of xenograft failure model with calcification for further animal study.

Bit-serial Discrete Wavelet Transform Filter Design (비트 시리얼 이산 웨이블렛 변환 필터 설계)

  • Park Tae geun;Kim Ju young;Noh Jun rye
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.4A
    • /
    • pp.336-344
    • /
    • 2005
  • Discrete Wavelet Transform(DWT) is the oncoming generation of compression technique that has been selected for MPEG4 and JEPG2000, because it has no blocking effects and efficiently determines frequency property of temporary time. In this paper, we propose an efficient bit-serial architecture for the low-power and low-complexity DWT filter, employing two-channel QMF(Qudracture Mirror Filter) PR(Perfect Reconstruction) lattice filter. The filter consists of four lattices(filter length=8) and we determine the quantization bit for the coefficients by the fixed-length PSNR(peak-signal-to-noise ratio) analysis and propose the architecture of the bit-serial multiplier with the fixed coefficient. The CSD encoding for the coefficients is adopted to minimize the number of non-zero bits, thus reduces the hardware complexity. The proposed folded 1D DWT architecture processes the other resolution levels during idle periods by decimations and its efficient scheduling is proposed. The proposed architecture requires only flip-flops and full-adders. The proposed architecture has been designed and verified by VerilogHDL and synthesized by Synopsys Design Compiler with a Hynix 0.35$\mu$m STD cell library. The maximum operating frequency is 200MHz and the throughput is 175Mbps with 16 clock latencies.