• Title/Summary/Keyword: Non-ferrous metals

Search Result 87, Processing Time 0.023 seconds

Characteristics of fresh mortar with particle size and replacement ratio of copper slag (동제련 슬래그의 입도 및 잔골재 치환율 변화에 따른 시멘트 모르타르의 특성)

  • Hong, Chang Woo;Lee, Jung-Il;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.1
    • /
    • pp.41-48
    • /
    • 2016
  • It is estimated that over 2 million tons of non-ferrous wastes are generated after refining. Up to now, most researches were focused on extracting precious metals and there were very few research on the utilization of the slag byproduct. In this study, we studied to evaluate whether copper slag could be used as aggregates in concrete. Fresh mortar were evaluated on the particle size and replacement ratio of the copper slag with river-sand. Experimental results indicated that flow, air content and drying shrinkage of concrete varied with particle size, which confirmed that proper classification of copper slag is very important. And, setting time and unit weight of the concrete increased with replacement ratio. When particle size of the slag was similar to the river-sand, concrete with copper slag showed slump, air content, setting time, drying shrinkage and unit weight became larger compared to the concrete using river-sand only. Therefore, it is believed that proper classification and replacement ratio should be optimized for the effective use of slag in concrete.

The Environmental Hazard Assessment of Siting Restricted Industries from Industrial Complex in Rural Area Applied by Chemical Ranking and Scoring System (화학적 등급화기법을 적용한 농공단지 입주제한업종의 환경유해성 평가)

  • Hong, Sang-Pyo
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.6
    • /
    • pp.549-560
    • /
    • 2015
  • The priorities of siting restriction was derived from quantification of environmental hazard according to industrial classification based on 'Chemical Ranking and Scoring System(CRS)' which is handling the discharge characteristics of 31 industrial classifications regulated from locating at 'Industrial Complex in Rural Area(ICRA)'. CRS that is utilizing the data of 'Pollutant Release and Transfer Registers(PRTR)' is applied to determine human health risk and ecological risk which are calculated by discharged amount and materials $LC_{50}$ according to water, soil and air media based on industrial classification. From this process, exposure assessment and toxicity assessment for integrating the adverse environmental impact and the mitigation effect of environmental risk according to the development of environmental technologies into establishing the rational landuse management method for the 31 industrial classifications regulated from locating at ICRA was analyzed. From the assessment result of the siting restriction removal at ICRA for 31 industrial classifications, based on 2012 year reference 6 industries that includes Manufacture of Guilt Coloration Surface Processing Steel Materials, Manufacture of Biological Product, Manufacture of Smelting Refining and Alloys of Copper, Dyeing and Finishing of Fibers and Yarns, Manufacture of Other Basic Iron and Steel n.e.c., Rolling Drawing and Extruding of Non-ferrous Metals n.e.c. are calculated as having relatively lower environmental hazards, thus it is judged that the siting restriction mitigation at ICRA is possible for the 6 industrial classifications that are not discharging the specific hazardous water contaminants during manufacturing process.

A Pilot Establishment of the Job-Exposure Matrix of Lead Using the Standard Process Code of Nationwide Exposure Databases in Korea

  • Ju-Hyun Park;Sangjun Choi;Dong-Hee Koh;Dae Sung Lim;Hwan-Cheol Kim;Sang-Gil Lee;Jihye Lee;Ji Seon Lim;Yeji Sung;Kyoung Yoon Ko;Donguk Park
    • Safety and Health at Work
    • /
    • v.13 no.4
    • /
    • pp.493-499
    • /
    • 2022
  • Background: The purpose of this study is to construct a job-exposure matrix for lead that accounts for industry and work processes within industries using a nationwide exposure database. Methods: We used the work environment measurement data (WEMD) of lead monitored nationwide from 2015 to 2016. Industrial hygienists standardized the work process codes in the database to 37 standard process and extracted key index words for each process. A total of 37 standardized process codes were allocated to each measurement based on an automated key word search based on the degree of agreement between the measurement information and the standard process index. Summary statistics, including the arithmetic mean, geometric mean, and 95th percentile level (X95), was calculated according to industry, process, and industry process. Using statistical parameters of contrast and precision, we compared the similarity of exposure groups by industry, process, and industry process. Results: The exposure intensity of lead was estimated for 583 exposure groups combined with 128 industry and 35 process. The X95 value of the "casting" process of the "manufacture of basic precious and non-ferrous metals" industry was 53.29 ㎍/m3, exceeding the occupational exposure limit of 50 ㎍/m3. Regardless of the limitation of the minimum number of samples in the exposure group, higher contrast was observed when the exposure groups were by industry process than by industry or process. Conclusion: We evaluated the exposure intensities of lead by combination of industry and process. The results will be helpful in determining more accurate information regarding exposure in lead-related epidemiological studies.

A Study on the Characteristics of Global FDI on China's Balanced Development Strategy : Focusing on Korean FDI Characteristics by Major Cities in China (중국지역균형발전전략에 미치는 글로벌 FDI 특성에 관한 연구 :중국주요도시별 한국FDI 특성을 중심으로)

  • Ryoo, Sung-Woo;Mun, Cheol-Ju
    • Korea Trade Review
    • /
    • v.43 no.4
    • /
    • pp.155-175
    • /
    • 2018
  • This study estimates the technical efficiency and total factor productivity(TFP) of and analyzes the relationship between TFP and exports for Korean manufacturing companies from 2000 to 2016. Specially, TFP is decomposed into Technical Change(TC), Technical Efficiency Change (TEC), and Sale Effect(SE), and compared between large and small enterprises. First, in the case of technical efficiency, the Korean economy has been very vulnerable to external shocks, such as the sharp decline following the 2008 financial crisis. The efficiency of the electronics, automobile, and machinery sectors is low and needs to be improved. In addition, the technological efficiency of large enterprises is higher than that of SMEs in most manufacturing sub-sectors except for non-ferrous metals. In the case of TFP, most changes are due to TC, and the effective combination of labor, capital and the effect of scale have little effect, suggesting that improvement of internal structure is urgent. In addition, volatility due to the impact of the financial crisis in 2008 was much larger in SMEs than in large companies, so external economic impacts are more greater for SMEs than large enterprises. The relationship between TFP decomposition factors and exports shows that TC has a positive effect only on exports of SMEs. Therefore, in order to increase exports, in the case of SMEs, R&D support to promote technological development is needed. In the case of large companies, it is necessary to establish differentiated strategies for each export market, competitor company, and item to link efficiency and scale effect of exports.

  • PDF

Competitiveness and Export Performance in Korean Manufacturing Enterprises : Focusing on the Comparison of Conglomerates and SMEs (국내 제조기업의 경쟁력과 수출: 대기업과 중소기업의 비교를 중심으로)

  • Lee, Dong-Joo
    • Korea Trade Review
    • /
    • v.43 no.3
    • /
    • pp.1-26
    • /
    • 2018
  • This study estimates the technical efficiency and total factor productivity(TFP) of and analyzes the relationship between TFP and exports for Korean manufacturing companies from 2000 to 2016. Specially, TFP is decomposed into Technical Change(TC), Technical Efficiency Change (TEC), and Sale Effect(SE), and compared between large and small enterprises. First, in the case of technical efficiency, the Korean economy has been very vulnerable to external shocks, such as the sharp decline following the 2008 financial crisis. The efficiency of the electronics, automobile, and machinery sectors is low and needs to be improved. In addition, the technological efficiency of large enterprises is higher than that of SMEs in most manufacturing sub-sectors except for non-ferrous metals. In the case of TFP, most changes are due to TC, and the effective combination of labor, capital and the effect of scale have little effect, suggesting that improvement of internal structure is urgent. In addition, volatility due to the impact of the financial crisis in 2008 was much larger in SMEs than in large companies, so external economic impacts are more greater for SMEs than large enterprises. The relationship between TFP decomposition factors and exports shows that TC has a positive effect only on exports of SMEs. Therefore, in order to increase exports, in the case of SMEs, R&D support to promote technological development is needed. In the case of large companies, it is necessary to establish differentiated strategies for each export market, competitor company, and item to link efficiency and scale effect of exports.

  • PDF

The Effects of the Heavy and Chemical Industry Policy of the 1970s on the Capital Efficiency and Export Competitiveness of Korean Manufacturing Industries (1970년대(年代) 중화학공업정책(重化學工業政策)이 자본효율성(資本效率性)과 수출경쟁력(輸出競爭力)에 미친 영향(影響))

  • Yoo, Jung-ho
    • KDI Journal of Economic Policy
    • /
    • v.13 no.1
    • /
    • pp.65-113
    • /
    • 1991
  • Korea's rapid economic growth of the past thirty years was led by extremely fast export growth under extensive government intervention. Until very recently, the political regimes were authoritarian and oppressed human rights and labor movements. Because of these characteristics, many inside and outside Korea are under the impression that the rapid economic growth was made possible by the government's relentless push for export growth through industrial targetjng. Whether or not the government intervention was pivotal in Korean economic growth is an important issue because of its normative implications on the role of government and the degree of economic policy intervention in a market economy. A good example of industrial targeting policy in Korea is the "Heavy and Chemical Industry (HCI)" policy, which began in the early 1970s and lasted for one decade. Under the HCI policy the government intervened in resource allocation through preferential tax, trade, and credit and interest rate policies for "key industries" which included iron and steel, non-ferrous metals, shipbuilding, general machinery, chemicals, and electronics. This paper investigates the effects of. the HCI policy on the efficiency of capital and the export competitiveness of manufacturing industries. For individual three-digit KSIC (Korea Standard Industrial Classification) industries and for two industry groups, one favored by HCI Policy and the other not, this paper: (1) computes capital intensities and discusses the impact of the HCI policy on the changes in the intensities over time, (2) estimates the capital efficiencies and examines them on the basis of optimal condition of resource allocation, and (3) compares the Korean and Taiwanese shares of total imports by the OECD countries as a way of weighing the effects of the policy on the industries' export competitiveness. Taiwan is a good reference, as it did not adopt the kind of industrial targeting policy that Korea did, while the Taiwanese and Korean economies share similar characteristics. In the 1973-78 period, the capital intensity rose rapidly for the "HC Group" the group of industries favored by the policy, while it first declined and later showed an anemic rise for the "Light Group," the remaining manufacturing industries. Capital efficiency was much lower in the HC Group than in the Light Group, at least until the late 1970s. This paper acribes these results to excess investments in the favored industries and concludes that growth could have been faster in the absence of the HCI policy. The Korean Light Group's share in total imports by the OECD was larger than that of its Taiwanese counterpart but has become much smaller since 1978. For the HC Group Korea's market share was smaller than Taiwan's and has declined even more since the mid-1970s. This weakening in the export competitiveness of Korea's industries relative to Taiwan's lasted until the mid-1980s. This paper concludes that the HCI policy had either no positive effect on the competitiveness of the Korean manufacturing industries or negative effects.

  • PDF

Application of Environmental Friendly Bio-adsorbent based on a Plant Root for Copper Recovery Compared to the Synthetic Resin (구리 회수를 위한 식물뿌리 기반 친환경 바이오 흡착제의 적용 - 합성수지와의 비교)

  • Bawkar, Shilpa K.;Jha, Manis K.;Choubey, Pankaj K.;Parween, Rukshana;Panda, Rekha;Singh, Pramod K.;Lee, Jae-chun
    • Resources Recycling
    • /
    • v.31 no.4
    • /
    • pp.56-65
    • /
    • 2022
  • Copper is one of the non-ferrous metals used in the electrical/electronic manufacturing industries due to its superior properties particularly the high conductivity and less resistivity. The effluent generated from the surface finishing process of these industries contains higher copper content which gets discharged in to water bodies directly or indirectly. This causes severe environmental pollution and also results in loss of an important valuable metal. To overcome this issue, continuous R & D activities are going on across the globe in adsorption area with the purpose of finding an efficient, low cost and ecofriendly adsorbent. In view of the above, present investigation was made to compare the performance of a plant root (Datura root powder) as a bio-adsorbent to that of the synthetic one (Tulsion T-42) for copper adsorption from such effluent. Experiments were carried out in batch studies to optimize parameters such as adsorbent dose, contact time, pH, feed concentration, etc. Results of the batch experiments indicate that 0.2 g of Datura root powder and 0.1 g of Tulsion T-42 showed 95% copper adsorption from an initial feed/solution of 100 ppm Cu at pH 4 in contact time of 15 and 30 min, respectively. Adsorption data for both the adsorbents were fitted well to the Freundlich isotherm. Experimental results were also validated with the kinetic model, which showed that the adsorption of copper followed pseudo-second order rate expression for the both adsorbents. Overall result demonstrates that the bio-adsorbent tested has a potential applicability for metal recovery from the waste solutions/effluents of metal finishing units. In view of the requirements of commercial viability and minimal environmental damage there from, Datura root powder being an effective material for metal uptake, may prove to be a feasible adsorbent for copper recovery after the necessary scale-up studies.