• Title/Summary/Keyword: Non-equilibrium comdensation

Search Result 1, Processing Time 0.015 seconds

Condensation processes in transonic two-phase flows of saturated humid air using a small-disturbance model (미교란 모델을 이용한 포화 습공기 천음속 2상 유동에서의 응축현상)

  • Lee, Jang-Chang;Zvi Rusak
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.6
    • /
    • pp.23-29
    • /
    • 2003
  • Transonic two-phase flow of Saturated humid air, in which relative humidity is 100%, with various condensation processes around thin airfoils is investigated. The study uses an extended transonic small-disturbance(TSD) model of Rusak and Lee [11, 12] which includes effects of heat addition to the flow due to condensation. Two possible limit types of condensation processes are considered. In the nonequilibrium and homogeneous process, the condensate mass fraction is calculated according to classical nucleation and droplet growth rate models. In the equilibrium process, the condensate mass fraction is calculated by assuming an isentropic process. The flow and condensation equations are solved numerical1y by iterative computations. Results under same upstream conditions describe the flow structure, field of condensate, and pressure distribution on airfoil's surfaces. It is found that flow characteristics, such as position and strength of shock waves and airfoil’s pressure distribution, are different for the two condensation processes. Yet, in each case, heat addition as a result of condensation causes significant changes in flow behavior and affects the aerodynamic performance of airfoils.