• Title/Summary/Keyword: Non-destructive measurements

Search Result 109, Processing Time 0.022 seconds

Prediction of Eggshell Ultrastructure via Some Non-destructive and Destructive Measurements in Fayoumi Breed

  • Radwan, Lamiaa M.;Galal, A.;Shemeis, A.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.7
    • /
    • pp.993-998
    • /
    • 2015
  • Possibilities of predicting eggshell ultrastructure from direct non-destructive and destructive measurements were examined using 120 Fayoumi eggs collected from the flock at 45 weeks of age. The non-destructive measurements included weight, length and width of the egg. The destructive measurements were breaking strength and shell thickness. The eggshell ultrastructure traits involved the total thickness of eggshell layer, thickness of palisade layer, cone layer and total score. Prediction of total thickness of eggshell layer based on non-destructive measurements individually or simultaneously was not possible ($R^2=0.01$ to 0.16). The destructive measurements were far more accurate than the non-destructive in predicting total thickness of eggshell layer. Prediction based on breaking strength alone was more accurate ($R^2=0.85$) than that based on shell thickness alone ($R^2=0.72$). Adding shell thickness to breaking strength (the best predictor) increased the accuracy of prediction by 5%. The results obtained indicated that both non-destructive and destructive measurements were not useful in predicting the cone layer ($R^2$ not exceeded 18%). The maximum accuracy of prediction of total score ($R^2=0.48$) was obtained from prediction based on breaking strength alone. Combining shell thicknesses and breaking strength into one equation was no help in improving the accuracy of prediction.

Non-contact surface wave testing of pavements: comparing a rolling microphone array with accelerometer measurements

  • Bjurstrom, Henrik;Ryden, Nils;Birgisson, Bjorn
    • Smart Structures and Systems
    • /
    • v.17 no.1
    • /
    • pp.1-15
    • /
    • 2016
  • Rayleigh wave velocity along a straight survey line on a concrete plate is measured in order to compare different non-destructive data acquisition techniques. Results from a rolling non-contact data acquisition system using air-coupled microphones are compared to conventional stationary accelerometer results. The results show a good match between the two acquisition techniques. Rolling measurements were found to provide a fast and reliable alternative to stationary system for stiffness determination. However, the non-contact approach is shown to be sensitive to unevenness of the measured surface. Measures to overcome this disadvantage are discussed and demonstrated using both forward and reverse rolling measurements.

Development of a DDA+PGA-combined non-destructive active interrogation system in "Active-N"

  • Kazuyoshi Furutaka;Akira Ohzu;Yosuke Toh
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4002-4018
    • /
    • 2023
  • An integrated neutron interrogation system has been developed for non-destructive assay of highly-radioactive special nuclear materials, to accumulate knowledge of the method through developing and using it. The system combines a differential die-away (DDA) measurement system for the quantification of nuclear materials and a prompt gamma-ray analysis (PGA) system for the detection of neutron poisons which disturb the DDA measurements; a common D-T neutron generator is used. A special care has been taken for the selection of materials to reduce the background gamma rays produced by the interrogation neutrons. A series of measurements were performed to test the basic performance of the system. The results show that the DDA system can quantify plutonium of as small as 20 mg and it is not affected by intense neutron background up to 1.57 × 107 s-1 and gamma ray of 4.43 × 1010 s-1. The gamma-ray background counting rate at the PGA detector was reduced down to 3.9 × 103 s-1 even with the use of the D-T neutron generator. The test measurements show that the PGA system is capable of detecting 0.783 g of boron and about 86.8 g of gadolinium in 30 min.

Detection of Subsurface Defects in Metal Materials Using Infrared Thermography; Image Processing and Finite Element Modeling

  • Ranjit, Shrestha;Kim, Won Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.2
    • /
    • pp.128-134
    • /
    • 2014
  • Infrared thermography is an emerging approach to non-contact, non-intrusive, and non-destructive inspection of various solid materials such as metals, composites, and semiconductors for industrial and research interests. In this study, data processing was applied to infrared thermography measurements to detect defects in metals that were widely used in industrial fields. When analyzing experimental data from infrared thermographic testing, raw images were often not appropriate. Thus, various data analysis methods were used at the pre-processing and processing levels in data processing programs for quantitative analysis of defect detection and characterization; these increased the infrared non-destructive testing capabilities since subtle defects signature became apparent. A 3D finite element simulation was performed to verify and analyze the data obtained from both the experiment and the image processing techniques.

Non-destructive evaluation of concrete quality using PZT transducers

  • Tawie, R.;Lee, H.K.;Park, S.H.
    • Smart Structures and Systems
    • /
    • v.6 no.7
    • /
    • pp.851-866
    • /
    • 2010
  • This paper presents a new concept of using PZT (lead zircornate titanate) transducers as a non-destructive testing (NDT) tool for evaluating quality of concrete. Detection of defects in concrete is very important in order to check the integrity of concrete structures. The electro-mechanical impedance (EMI) response of PZT transducers bonded onto a concrete specimen can be used for evaluating local condition of the specimen. Measurements are carried out by electrically exciting the bonded PZT transducers at high frequency range and taking response measurements of the transducers. In this study, the compression test results showed that concrete specimens without sufficient compaction are likely to fall below the desired strength. In addition, the strength of concrete was greatly reduced as the voids in concrete were increased. It was found that the root mean square deviation (RMSD) values yielded between the EMI signatures for concrete specimens in dry and saturated states showed good agreement with the specimens' compressive strength and permeable voids. A quality metric was introduced for predicting the quality of concrete based on the dry-saturated state of concrete specimens. The simplicity of the method and the current development towards low cost and portable impedance measuring system, offer an advantage over other NDE methods for evaluating concrete quality.

State-of-the-art and challenges of non-destructive techniques for in-situ radiological characterization of nuclear facilities to be dismantled

  • Amgarou, Khalil;Herranz, Margarita
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3491-3504
    • /
    • 2021
  • This paper reports on the state-of-the-art of the main non-destructive assay (NDA) techniques usually used for in-situ radiological characterization of nuclear facilities subject to a decommissioning programme. For the sake of clarity and coherence, they have been classified as environmental radiation monitoring, surface contamination measurements, gamma spectrometry, passive neutron counting and radiation cameras. Particular mention is also made here to the various challenges that each of these techniques must currently overcome, together with the formulation of some proposals for a potential evolution in the future.

Correlation of rebound hammer and ultrasonic pulse velocity methods for instant and additive-enhanced concrete

  • Yudhistira J.U. Mangasi;Nadhifah K. Kirana;Jessica Sjah;Nuraziz Handika;Eric Vincens
    • Structural Monitoring and Maintenance
    • /
    • v.11 no.1
    • /
    • pp.41-55
    • /
    • 2024
  • This study aims to determine the characteristics of concrete as identified by Rebound Hammer and Ultrasonic Pulse Velocity (UPV) tests, focusing particularly on their efficacy in estimating compressive strength of concrete material. The study involved three concrete samples designed to achieve a target strength of 29 MPa, comprising normal concrete, instant concrete, and concrete with additives. These were cast into cube specimens measuring 150×150×150 mm. Compressive strength values were determined through both destructive and non-destructive testing on the cubic specimens. As a result, the non-destructive methods yielded varying outcomes for each correlation approach, influenced by the differing constituent materials in the tested concretes. However, normal concrete consistently showed the most reliable correlation, followed by concrete with additives, and lastly, instant concrete. The study found that combining Rebound Hammer and UPV tests enhances the prediction accuracy of compressive strength of concrete. This synergy was quantified through multivariate regression, considering UPV, rebound number, and actual compressive strength. The findings also suggest a more significant influence of the Rebound Hammer measurements on predicting compressive strength for BN and BA, whereas UPV and RN had a similar impact on predicting BI compressive strength.

APPLICATION OF A MULTI-WAVELENGTH NIR DIODE LASER ARRAY FOR NON-DESTRUCTIVE FOOD ANALYSIS

  • Tauscher, Bernhard;Butz, Peter;Lindauer, Ralf
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.3123-3123
    • /
    • 2001
  • Near infrared (NIR) spectroscopy has become a widely used method in food and beverage analysis because of its speed, accuracy and the simplicity of sample preparation. One of the basic requirements of NIR instruments is a wide dynamic range if weak, or small, absorption changes or concentrations are to be measured. Thus the instrument must be sufficiently luminous, and efficient, to enable measurements to be made in a reasonably short time, as for some applications (e.g. sorting) short response times are essential. Diode lasers function the same way as lasers but linewidths are not as narrow as typical lasers. In this work an array of seven laser diodes (in the range of 750-1100 nm) with energy outputs of around hundred milliwatts each were combined with a fast diode array spectrometer (400-1100 nm, 1024 pixels, integration time from 3 ms) as detector. Measurements in transmission mode were performed in solutions of sugars in aqueous solutions and in deuteriumoxide. The feasibility of non-destructive measurements in transmission mode was investigated for different fruits and vegetables.

  • PDF

Ultrasonic characterization of exhumed cast iron water pipes

  • Groves, Paul;Cascante, Giovanni;Knight, Mark
    • Smart Structures and Systems
    • /
    • v.7 no.4
    • /
    • pp.241-262
    • /
    • 2011
  • Cast iron pipe has been used as a water distribution technology in North America since the early nineteenth century. The first cast iron pipes were made of grey cast iron which was succeeded by ductile iron as a pipe material in the 1940s. These different iron alloys have significantly different microstructures which give rise to distinct mechanical properties. Insight into the non-destructive structural condition assessment of aging pipes can be advantageous in developing mitigation strategies for pipe failures. This paper examines the relationship between the small-strain and large-strain properties of exhumed cast iron water pipes. Nondestructive and destructive testing programs were performed on eight pipes varying in age from 40 to 130 years. The experimental program included microstructure evaluation and ultrasonic, tensile, and flexural testing. New applications of frequency domain analysis techniques including Fourier and wavelet transforms of ultrasonic pulse velocity measurements are presented. A low correlation between wave propagation and large-strain measurements was observed. However, the wave velocities were consistently different between ductile and grey cast iron pipes (14% to 18% difference); the ductile iron pipes showed the smaller variation in wave velocities. Thus, the variation of elastic properties for ductile iron was not enough to define a linear correlation because all the measurements were practically concentrated in single cluster of points. The cross-sectional areas of the specimens tested varied as a result of minor manufacturing defects and levels of corrosion. These variations affect the large strain testing results; but, surface defects have limited effect on wave velocities and may also contribute to the low correlations observed. Lamb waves are typically not considered in the evaluation of ultrasonic pulse velocity. However, Lamb waves were found to contribute significantly to the frequency content of the ultrasonic signals possibly resulting in the poor correlations observed. Therefore, correlations between wave velocities and large strain properties obtained using specimens manufactured in the laboratory must be used with caution in the condition assessment of aged water pipes especially for grey cast iron pipes.