• 제목/요약/키워드: Non-cytotoxicity

검색결과 324건 처리시간 0.025초

Effects of Non-Cytotoxic Concentration of Anticancer Drugs on Doxorubicin Cytotoxicity in Human Breast Cancer Cell Lines

  • Lee, Yoon-Ik;Lee, Young-Ik
    • BMB Reports
    • /
    • 제29권4호
    • /
    • pp.314-320
    • /
    • 1996
  • The effects of non-cytotoxic concentrations of tamoxifen, verapamil, and trifluoperazine on doxorubicin cytotoxicity in five human breast cancer cell lines were studied. A non-cytotoxic concentration of tamoxifen resulted in enhanced doxorubicin cytotoxicity in HTB-123, HTB-26, and MCF-7. In these three cell lines, a combination of tamoxifen with verapamil resulted in even more increased doxorubicin cytotoxicity. Addition of verapamil or trifluoperazine alone did not influence the doxorubicin cytotoxicity significantly. Only in HTB-19 did coincubation with verapamil increase the doxorubicin cytotoxicity. In HTB-123, combination of tamoxifen with trifluoperazine increased the doxorubicin cytotoxicity significantly. In the cell lines where co-incubation with tamoxifen increased doxorubicin sensitivity, high estrogen receptor expression was detected. However, HTB-20, where tamoxifen did not enhance doxorubicin action, was also estrogen receptor positive. None of the cell lines had multidrug resistance related drug efflux and drug retention was not increased by the treatment with tamoxifen and verapamil. Cell cycle traverses were not altered by incubation with tamoxifen, verapamil or combinations thereof. These observatlons suggest mechanism of non-cytotoxic concentrations of tamoxifen and verapamil on doxorubicin cytotoxicity may involve one or more other cellular processes besides those of interference of estrogen binding to its receptor, cell cycle perturbation, or drug efflux blocking.

  • PDF

비접촉 조건에서의 Naegleria fowleri에 의한 표적세포의 세포독성 (Cytotoxicity of target cell against Naegleria fowleri under non-contact condition)

  • 강창근;홍일화;김종현
    • 한국동물위생학회지
    • /
    • 제42권4호
    • /
    • pp.169-175
    • /
    • 2019
  • Naegleria fowleri, a pathogenic free-living amoeba, leads to a fatal infection known as primary amebic meningoencephalitis (PAM) in human and animals. PAM is an acute, fulminant, necrotizing, and hemorrhagic disease that leads to death in approximately seven days. In this study, we investigate the cytotoxicity of target cells and the secreted molecules of N. fowleri under the non-contact condition. The target cell (U87MG cell) treated with N. fowleri lysates showed no morphological changes and no cytotoxicity. By contrast, the U87MG cells co-cultured with N. fowleri trophozoites under the non-contact condition induced morphological changes and reduction in number. When U87MG cells were co-cultured with N. fowleri trophozoites under the non-contact condition for 30 min, 2 hr, and 4 hr, the levels of cytotoxicity of target cells were 32.3, 35.5, and 37.8%, respectively. Particularly, when the ratio of amoeba to target cells is 10 to 1, the level of cytotoxicity of target cells was 49.7% at 30 min. To show the proteins secreted from N. fowleri under the non-contact condition, we carried out 2D electrophoresis and observed 6 major proteins. Finally, these results suggest that the molecules released from N. fowleri under the non-contact condition induce the cell death and this process is an important step in pathogenesis of N. fowleri.

Simple Analysis for Interaction between Nanoparticles and Dye-Containing Vesicles as a Biomimetic Cell-Membrane

  • Shin, Sohyang;Umh, Ha Nee;Kim, Younghun
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권1호
    • /
    • pp.231-236
    • /
    • 2013
  • Some cytotoxicity studies for the interpretation of the interaction between nanoparticles and cells are non-mechanistic and time-consuming. Therefore, non-biological screening methods, which are faster and simpler than in-vivo and in-vitro methods, are required as alternatives to current cytotoxicity tests. Here, we proposed a simple screening method for the analysis of the interaction between several AgNPs (bare-, citrate-, and polyvinylpyrrolidone-coating) and dye-containing vesicles acting as a biomimetic cell-membrane. The interaction between AgNPs and vesicles could be evaluated readily by UV-vis spectra. Absorbance deviation in UV-vis spectra revealed a large attraction between neighboring particles and vesicles. This was confirmed by (Derjagin, Landau, Verwey, and Overbeek) theory and DMF (dark-field microscopy) analysis. This proposed method might be useful for analyzing the cytotoxicity of nanoparticles with cell-membranes instead of in vitro or in vivo cytotoxicity tests.

담배주류연의 세포독성에 대한 담배필터의 영향 (Effect of Cigarette Filter on Cytotoxicity Potential of Mainstream Smoke)

  • 신한재;손현옥;한정호;박철훈;허재연;이동욱;황건중;현학철
    • 한국연초학회지
    • /
    • 제27권1호
    • /
    • pp.51-58
    • /
    • 2005
  • The objective of this study was to evaluate the effect of cigarette filter on in vitro cytotoxicity of cigarette mainstream smoke from the cigarette. In this work, we used 3 types of cigarettes included non-filtered 2R4F cigarette, cellulose acetate-filtered 2R4F cigarette, and carbon dual-filtered 2R4F cigarette which was made from original 2R4F by replacing with an acetate filter containing carbon. The cytotoxicity of both the cigarette smoke condensate (CSC), which was collected in Cambridge filter pad, and the gas/vapor phase (GVP), which was bubbled through in phosphate-buffered saline in a gas-washing bottle, was determined using a neutral red uptake assay with CHO-K1 cells. With regard to cytotoxicity when calculated on an equal puff basis, the cytotoxicity of CSC from the filtered cigarettes was lower than that of the non filtered cigarette. Also, $EC_{50}$ vlaue of GVP from carbon filter cigarette was 40.9 puff/L, indicating the cytotoxicity to be $20\%$ lower than that of the CA filter cigarette. The cytotoxicity of the GVP was correlated to the several vapor phase components (formaldehyde, acetaldehyde, acetone, acrolein, crotonaldehyde and MEK). In conclusion, carbon filter, which significantly reduced the amount of carbonyl compounds in mainstream cigarette smoke, results in significant reductions in the cytotoxicity potential of the smoke.

Cytotoxicity, Apoptosis Induction and Anti-Metastatic Potential of Oroxylum indicum in Human Breast Cancer Cells

  • Kumar, D.R. Naveen;George, V. Cijo;Suresh, P.K.;Kumar, R. Ashok
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권6호
    • /
    • pp.2729-2734
    • /
    • 2012
  • Despite clinical advances in anticancer therapy, there is still a need for novel anticancer metabolites, with higher efficacy and lesser side effects. Oroxylum indicum (L.) Vent. is a small tree of the Bignoniaceae family which is well known for its food and medicinal properties. In present study, the chemopreventive properties of O. indicum hot and cold non-polar extracts (petroleum ether and chloroform) were investigated with MDA-MB-231 (cancer cells) and WRL-68 (non-tumor cells) by XTT assay. All the extracts, and particularly the petroleum ether hot extract (PHO), exhibited significantly (P<0.05) higher cytotoxicity in MDA-MB-231 when compared to WRL-68 cells. PHO was then tested for apoptosis induction in estrogen receptor (ER)-negative (MDA-MB-231) and ER-positive (MCF-7) breast cancer cells by cellular DNA fragmentation ELISA, where it proved more efficient in the MDA-MB-231 cells. Further, when PHO was tested for anti-metastatic potential in a cell migration inhibition assay, it exhibited beneficial effects. Thus non-polar extracts of O. indicum (especially PHO) can effectively target ER-negative breast cancer cells to induce apoptosis, without harming normal cells by cancer-specific cytotoxicity. Hence, it could be considered as an extract with candidate precursors to possibly harness or alleviate ER-negative breast cancer progression even in advanced stages of malignancy.

Color stability, water sorption and cytotoxicity of thermoplastic acrylic resin for non metal clasp denture

  • Jang, Dae-Eun;Lee, Ji-Young;Jang, Hyun-Seon;Lee, Jang-Jae;Son, Mee-Kyoung
    • The Journal of Advanced Prosthodontics
    • /
    • 제7권4호
    • /
    • pp.278-287
    • /
    • 2015
  • PURPOSE. The aim of this study was to compare the color stability, water sorption and cytotoxicity of thermoplastic acrylic resin for the non-metal clasp dentures to those of thermoplastic polyamide and conventional heat-polymerized denture base resins. MATERIALS AND METHODS. Three types of denture base resin, which are conventional heat-polymerized acrylic resin (Paladent 20), thermoplastic polyamide resin (Bio Tone), thermoplastic acrylic resin (Acrytone) were used as materials for this study. One hundred five specimens were fabricated. For the color stability test, specimens were immersed in the coffee and green tee for 1 and 8 weeks. Color change was measured by spectrometer. Water sorption was tested after 1 and 8 weeks immersion in the water. For the test of cytotoxicity, cell viability assay was measured and cell attachment was analyzed by FE-SEM. RESULTS. All types of denture base resin showed color changes after 1 and 8 weeks immersion. However, there was no significant difference between denture base resins. All specimens showed significant color changes in the coffee than green tee. In water sorption test, thermoplastic acrylic resin showed lower values than conventional heat-polymerized acrylic resin and thermoplastic polyamide resin. Three types of denture base showed low cytotoxicity in cell viability assay. Thermoplastic acrylic resin showed the similar cell attachment but more stable attachment than conventional heat-polymerized acrylic resin. CONCLUSION. Thermoplastic acrylic resin for the non-metal clasp denture showed acceptable color stability, water sorption and cytotoxicity. To verify the long stability in the mouth, additional in vitro studies are needed.

Cellular Uptake and Cytotoxicity of β-Lactoglobulin Nanoparticles: The Effects of Particle Size and Surface Charge

  • Ha, Ho-Kyung;Kim, Jin Wook;Lee, Mee-Ryung;Jun, Woojin;Lee, Won-Jae
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권3호
    • /
    • pp.420-427
    • /
    • 2015
  • It is necessary to understand the cellular uptake and cytotoxicity of food-grade delivery systems, such as ${\beta}$-lactoglobulin (${\beta}$-lg) nanoparticles, for the application of bioactive compounds to functional foods. The objectives of this study were to investigate the relationships between the physicochemical properties of ${\beta}$-lg nanoparticles, such as particle size and zeta-potential value, and their cellular uptakes and cytotoxicity in Caco-2 cells. Physicochemical properties of ${\beta}$-lg nanoparticles were evaluated using particle size analyzer. Flow cytometry and confocal laser scanning microscopy were used to investigate cellular uptake and cytotoxicity of ${\beta}$-lg nanoparticles. The ${\beta}$-lg nanoparticles with various particle sizes (98 to 192 nm) and zeta-potential values (-14.8 to -17.6 mV) were successfully formed. A decrease in heating temperature from $70^{\circ}C$ to $60^{\circ}C$ resulted in a decrease in the particle size and an increase in the zeta-potential value of ${\beta}$-lg nanoparticles. Non-cytotoxicity was observed in Caco-2 cells treated with ${\beta}$-lg nanoparticles. There was an increase in cellular uptake of ${\beta}$-lg nanoparticles with a decrease in particle size and an increase in zeta-potential value. Cellular uptake ${\beta}$-lg nanoparticles was negatively correlated with particle size and positively correlated with zeta-potential value. Therefore, these results suggest that the particle size and zeta-potential value of ${\beta}$-lg nanoparticles play an important role in the cellular uptake. The ${\beta}$-lg nanoparticles can be used as a delivery system in foods due to its high cellular uptake and non-cytotoxicity.

Potential in vitro Protective Effect of Quercetin, Catechin, Caffeic Acid and Phytic Acid against Ethanol-Induced Oxidative Stress in SK-Hep-1 Cells

  • Lee, Ki-Mo;Kang, Hyung-Sik;Yun, Chul-Ho;Kwak, Hahn-Shik
    • Biomolecules & Therapeutics
    • /
    • 제20권5호
    • /
    • pp.492-498
    • /
    • 2012
  • Phytochemicals have been known to exhibit potent antioxidant activity. This study examined cytoprotective effects of phytochemicals including quercetin, catechin, caffeic acid, and phytic acid against oxidative damage in SK-Hep-1 cells induced by the oxidative and non-oxidative metabolism of ethanol. Exposure of the cells to excess ethanol resulted in a significant increase in cytotoxicity, reactive oxygen species (ROS) production, lipid hydroperoxide (LPO), and antioxidant enzyme activity. Excess ethanol also caused a reduction in mitochondrial membrane potential (MMP) and the quantity of reduced glutathione (GSH). Co-treatment of cells with ethanol and quercetin, catechin, caffeic acid and phytic acid significantly inhibited oxidative ethanol metabolism-induced cytotoxicity by blocking ROS production. When the cells were treated with ethanol after pretreatment of 4-methylpyrazole (4-MP), increased cytotoxicity, ROS production, antioxidant enzyme activity, and loss of MMP were observed. The addition of quercetin, catechin, caffeic acid and phytic acid to these cells showed suppression of non-oxidative ethanol metabolism-induced cytotoxicity, similar to oxidative ethanol metabolism. These results suggest that quercetin, catechin, caffeic acid and phytic acid have protective effects against ethanol metabolism-induced oxidative insult in SK-Hep-1 cells by blocking ROS production and elevating antioxidant potentials.

Protoberberine 알칼로이드가 PC12 세포중의 L-DOPA 유도 세포독성 작용에 미치는 영향 (Effects of Protoberberine Alkaloids on L-DOPA-Induced Cytotoxicity in PC12 Cells)

  • 이재준;김유미;김춘매;양유정;강민희;이명구
    • 약학회지
    • /
    • 제47권4호
    • /
    • pp.230-233
    • /
    • 2003
  • Previously, protoberberine alkaloids such as berberine and palmatine have been found to lower dopamine content in PC12 cells (Shin et at., 2000). In this study, the effects of berberine and palmatine on L-DOPA-induced increase in dopamine level and cytotoxicity in PC12 cells were investigated. Treatment of PC12 with L-DOPA at concentration ranges of 20∼50 $\mu$M increased dopamine content and the increase in dopamine levels by L-DOPA was inhibited by 10∼40 $\mu$M berberine and 10∼80 $\mu$M palmatine, which the concentration ranges did not show a cytotoxicity. However, berberine and palmatine at concentrations higher than 50 $\mu$M and 100 $\mu$M caused a cytotoxicity, respectively. In addition, berberine (10∼20 $\mu$M) and palmatine (10∼50 $\mu$M) at non-cytotoxic concentration ranges aggravated L-DOPA-induced cytotoxicity in PC12 cells (L-DOPA concentration ranges, 20∼50 $\mu$M). The L-DOPA-induced cytotoxicity was also significantly potentiated by berberine (50 $\mu$M) and palmatine (100 $\mu$M) with cytotoxic ranges. These data demonstrate that berberine and palmatine inhibit L-DOPA-induced increase in dopamine content and stimulate L-DOPA-induced neurotoxicity. Therefore, the possibility that the long-term L-DOPA treated patients with berberine and palmatine could be checked the adverse symptoms.

몇 가지 식물추출물이 배양 NIH3T3 섬유모세포의 세포생존율과 세포부착률에 미치는 세포독성에 관한 연구 (A Study on the Cytotoxic Effects of Several Plant Extracts on the Cell viability and Cell Adhesion Activity in Cultured NIH3T3 Fibroblast)

  • 임요섭;송원섭;서영미;박승택;김신무
    • 대한임상검사과학회지
    • /
    • 제42권3호
    • /
    • pp.116-124
    • /
    • 2010
  • This study was aimed to clerify the cytotoxicity of some plant extracts such as Hosta longissima HONDA (HL), Hemerocallis fulva var. Kwanso REGL (HFVK), Hemerocallis fulva L (HF), Macrocapium officinale NAKAI (MO) and Mentha canadensis var. piperascens HARA (MCVP), the cultured NIH3T3 fibroblasts were treated with 25, 50, 100, 150 and $200{\mu}g/mL$ of five kinds of plant extracts for 48 hours, respectively. The cytotoxicity of plant extracts was measured by MTT and NR assays for the cell viability, and XTT assay for the cell adhesion activity. In this study, HL, MO and FHVK extracts showed the range of midtoxic-non toxic by the criteria of chemical cytotoxicity. While, the HF and MCVP extracts showed midtoxic. In the extract cytotoxicity, HL, MO and FHVK extracts showed non-toxic by the criteria of extract cytotoxicity. While, HF extract was determined as lower-toxic. In the responsive sensitivity of each plant extract on colorimetric assays, HF extract was sensitive to mitochondrial enzyme by MTT assay, lysosomal enzyme by NR assay and mitochondrial nucleus by XTT assay. While, MCVP extract was sensitive to mitochondrial enzyme by MTT assay and lysosomal enzyme by NR assay than other assays. While, HL, HFVK and MO extracts were most sensitive to NR assay. Cell culture is one of useful materials in the screening of cytotoxic and recovary effect on the putative chemical agents or plant extract. And also, colorimetric assay is regarded as very useful tools for quantitative measurement of cytotoxic effect on plant extracts in vitro.

  • PDF