• Title/Summary/Keyword: Non-contact measuring

Search Result 247, Processing Time 0.028 seconds

Acquisition Model for 3D Shape Measurement Data

  • Park, Jong-Sik;Jang, Wang-Jin;Lee, Seong-Beom;Park, Chan-Seok
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.4
    • /
    • pp.16-21
    • /
    • 2008
  • The demand for three-dimensional (3D) shape measurements is increasing in a variety of fields, including the manufacture of molds and dies. The most popular technology for 3D shape measurement is the coordinate measuring machine (CMM) with a contact trigger probe. Although a CMM provides a high degree of accuracy, it is inefficient due to its long measuring time. It also has difficulty measuring soft objects that can be deformed by the touch of the contact probe. In addition, a CMM cannot digitize areas that are difficult to reach, and cannot capture very minute details on the surface of complex parts. For these reasons, optical non-contact measurement techniques are receiving more attention since they eliminate most of the problems associated with contact methods. Laser scanning is emerging as one of the more promising non-contact measurement techniques. This paper describes various acquisition considerations for laser scanning, including the accuracy of the 3D scan data, which depends on the charge-coupled device (CCD) gain and noise. The CCD gain and noise of a 3D laser scanner are varied while keeping the other conditions constant, and the measurement results are compared to the dimensions of a standard model. The experimental results show that a considerable time savings and an optimum degree of accuracy are possible by selecting the proper CCD gain and noise.

Development of Non-Contact Penetration Measuring Device for Pile Driving Workers (항타 시공 작업자를 위한 비접촉식 관입량 측정기 개발)

  • Kim, J.K.;Kong, Y.K.;Choi, K.H.;Cho, M.U.;Kim, S.Y.;Kim, M.J.;Lee, J.H.;Park, Chae Won
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.3
    • /
    • pp.58-63
    • /
    • 2020
  • At the construction site of the driving site, the pile rebound and penetration measurements are performed manually to determine the end point of the driving operation, thereby causing the measurer to be exposed to a death accident. In this study, in order to eliminate the risk of this work, a non-contact penetration measuring device was developed and usability evaluation was conducted. The penetration measuring device is manufactured based on the ultrasonic sensor, and can be combined with the pile to deliver the data in real time, and the delivered data can be output in real time on the portable PC and the final penetration can be calculated. Usability evaluation on the device was conducted by comparison with manual work. Usability evaluation was largely evaluated on measured values, subjective comfort, and body parts comfort. The result of the measured value tended to overestimate the value measured manually by the measuring device, which is similar to the previous research. In terms of subjective comfort and body part comfort, overall satisfaction was higher than the manual method when using the measuring device. Taken together, these results indicate that it is possible to use the rudder measuring device in place of manual work in the construction site, and it is judged that the worker's comfort is greatly increased by using the measuring machine. The results of this study suggest that the use of non-contact measuring device in the field can be used as basic data to support them.

A Non-contact Shape Measuring System Using an Artificial Neural Network

  • Jeong, Woo-tae;Lee, Myung-Chan;Koh, Duck-joon;Cho, Hyung-suck
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05a
    • /
    • pp.399-404
    • /
    • 1996
  • We developed a non-contact shape measuring device using computer image processing technology. We present a method of calibrating a CCD video camera and a laser range finder which is the most important step toward making an accurate shape measuring system. An artificial neural network is used for the calibration. Our measurement system is composed of a semiconductor laser. a CCD video camera, a personal computer, and a linear motion table. We think that the developed system could be used for measuring the change in shape of the spent nuclear fuel rod before and after irradiation which is one of the most important tasks for developing a better nuclear fuel. A radiation shield is suggested for the possible utilization of the range finder in radioactive environment.

  • PDF

Non-contacting OMM (On Machine Measurement) based on CAD Model (CAD 모델 기반 비접촉 기상 측정에 관한 연구)

  • 권세진;이정근;박정환;고태조;김선호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.11
    • /
    • pp.134-141
    • /
    • 2003
  • An industrial product is designed and fabricated, followed by the inspection process in order to check whether it is dimensionally tolerable or not. The machining process produces a part such as a mold or die, in which the three-dimensional coordinate might be measured by a CMM (Coordinate Measuring Machine) for assessment of its dimension. It is not ignorable, however, that a CMM measurement requires a lot of operating time and cost, which has led to many studies on the OMM system. The OMM system can be categorized into contact and non-contact types, and each of which has its own strengths and weaknesses. Non-contacting types generally utilize structured lights, sounds or magnetic fields. Though they show rather poor performance in positional accuracy, the measuring speed is faster than the contacting probes. This paper presents the development of an OMM system based on a non-contacting laser displacement sensing apparatus and CAD model. The system is composed of software modules of center-aligning and measuring, which has been operated and verified on a NC machining center on a shop floor.

Measurement of Bangudae Rock Joint Using Non-adhesive, Non-contact Inclinometer Slope Laser Measuring System (비부착, 비접촉 방식의 계측기를 이용한 반구대암각화 암반 절리면의 계측)

  • Kim, Jae Hyun;Lee, Sang Ok;Chung, Kwang Yong;Han, Min Su
    • Journal of Conservation Science
    • /
    • v.37 no.6
    • /
    • pp.617-625
    • /
    • 2021
  • Daegokcheon Stream in Daegok-ri, Ulju-gun, is an area with a developed valley and bedrock from Gajisan Provincial Park to the confluence of the Taehwa River across the Yangsan Fault. To measure the rock of Bangudae petroglyphs, the mineralogical weathering, joints, and scours or cavities at the bottom were confirmed. The measurement was carried out for a short period of time on the joint of the bedrock on which the Bangudae petroglyphs were engraved. Compared to the measured value obtained using existing optical fiber (Ch4 150 ㎛), a displacement value of 300 ㎛ was obtained using the non-attached, non-contact type of measuring instrument. In the future, it is inferred that this instrument could be used for various cultural properties if the HSV-value suitable for illuminance and various measurement experiences are stored.

A Study on the Development of High Precision Cam Profile Measuring System using Laser Interferometer (레이저를 이용한 캠 프로파일 정밀 측정 장치 개발에 관한 연구)

  • Lim S.H.;Lee C.M.;Jung J.Y.;Yoon S.D.;Shin S.H.;Shin S.W.;Hwang Y.K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.267-268
    • /
    • 2006
  • Cam mechanisms are one of the most popular devices for generating irregular motion and are widely used in many industrial areas. The purpose of this study is the development of high precision measuring system fur measurement data acquisition and analysis of a manufactured cam profile. The developed system is composed of servo motor, CNC controller, rotary encoder, and laser interferometer And also, this system is non-contact measuring type. The developed system takes only 5 minutes to measure a cam profile and to analyze the measuring data while the CMM(coordinate measuring machine) takes about 1 hours even by a skilled operator.

  • PDF

Calibration off multiple-sensor measuring system for efficient visual inspection (형상 검사를 위한 multiple-sensor 측정 시스템의 캘리브레이션 연구)

  • 김승만;손석배;이관행
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.579-582
    • /
    • 2002
  • In acquiring the surface information of a part, two types of measuring machines have been used: contact type and non-contact type. Since each measuring device has the pres and cons, an integrated measuring system is proposed to acquire the optimal point data. In order to implement the integrated measuring system, the relationship of coordinate systems between each measuring device should be established. In this paper, a new datum fixture and a calibration method for the multiple-sensor measuring system are proposed. The datum fixture is designed to interface two machines, a CMM and a laser scanner. The position of the datum fixture is calibrated by the axis information off motorized rotation stage which is used for a part setup.

  • PDF

Laser-Ultrasonics Application for Non-Contact and Non-destructive Evaluation of Structure (구조물의 비접촉 비파괴 검사를 위한 레이저 초음파법 적용)

  • Kim Jae-Yeal;Song Kyung-Seok;Yang Dong-Jo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.4
    • /
    • pp.49-54
    • /
    • 2005
  • Measuring defects on the inside and on the surface of a steel structure is very important technology in order to predict the life span of the structure. In particular, a place with a high probability that it may contain defects is a welded part and it is very important to check defects in the part, absence/presence of non-uniform substances, its shape, and the location. Many non-destructive tests can be applied, but the ultrasonic flow detection test is widely used with some advantages. The ultrasonic flow detection test, however, cannot be applied when there is a problem by a contact medium between PZT and a specimen, in case of a small and complicated shape or a moving object or when the specimen is hot. In this study, to solve the problems of the contact ultrasonic flow detection test, the non-contact ultrasonic flow detection test for sending/receiving ultrasonic waves using lasers was described. I intended to develop a non-destructive detection system applying the laser application ultrasonic test to a steel structure by detecting the defects inside of and on the surface of the specimen.

A Study on Measurement Technique of Insulation Resistance for Non-interrupting Inspection Using Non-contact Voltage Phase Detection Technology (비접촉 전압위상 검출 기술을 이용한 무정전 절연저항 측정 방법에 관한 연구)

  • Lee, Ki-Yeon;Moon, Hyun-Wook;Kim, Dong-Woo;Lim, Young-Bae;Choi, Dong-Hwan;Kim, Yong-Hyeok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.8
    • /
    • pp.1106-1112
    • /
    • 2018
  • In this paper, measurement techniques are presented to test the performance of insulation without interruption if it is difficult to measure insulation resistance. Especially, non-contact voltage phase detection techniques have been developed that can be applied in environments where it is difficult to find voltage measurement locations such as component receptors. The performance verification of the non-interrupting insulation resistance measuring devices has been tested against existing products using standard calibration equipment and test jigs. The validation confirmed performance within 2 % for direct contact type and within 10 % for non-contact type. In addition, the procedure to make continuous insulation test using the equipment was proposed.

Investigation of Standard Error Range of Non-Contact Thermometer by Environment (외부 환경 변화에 의한 비 접촉 체온계의 오차 범위 측정)

  • Kim, Jeongeun;Park, Sangwoong;Choi, Heakyung
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.8 no.4
    • /
    • pp.307-321
    • /
    • 2020
  • Purpose : A person infected by SARS-CoV2 may present various symptoms such as fever, pain in lower respiratory tract, and pneumonia. Measuring body temperature is a simple method to screen patients. However, changes in the surrounding environment may cause errors in infrared measurement. Hence, a non-contact thermometer controls this error by setting a correction value, but it is difficult to correct it for all environments. Therefore, we investigate device error values according to changes in the surrounding environment (temperature and humidity) and propose guidelines for reliable patient detection. Methods : For this study, the temperature was measured using three types of non-contact thermometers. For accurate temperature measurement, we used a water bath kept at a constant temperature. During temperature measurement, we ensured that the temperature and humidity were maintained using a thermo-hygrometer. The conditions of the surrounding environment were changed by an air conditioner, humidifier, warmer, and dehumidifier. Results : The temperature of the water bath was measured using a non-contact thermometer kept at various distances ranging from 3~10 cm. The value measured by the non-contact thermometer was then verified using a mercury thermometer, and the difference between the measured temperatures was compared. It was observed that at normal surrounding temperature (24 ℃), there was no difference between the values when the non-contact thermometer was kept at 3 cm. However, as the distance of the non-contact thermometer was increased from the water bath, the recorded temperature was significantly different compared with that of mercury thermometer. Moreover, temperature measurements were conducted at different surrounding temperatures and the results obtained significantly varied from when the thermometer was kept at 3 cm. Additionally, it was observed that the effect on temperature decreases with an increase in humidity Conclusion : In conclusion, non-contact thermometers are lower in lower temperature and dry weather in winter.