• Title/Summary/Keyword: Non-constraint

Search Result 336, Processing Time 0.03 seconds

Determining Subsidies for Banks in Policy Loans to Innovative SMEs (혁신형 중소기업 정책금융에 대한 금융기관 지원금 결정모형)

  • Kim, Sung-Hwan;Seol, Byung-Moon
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.34 no.2
    • /
    • pp.1-13
    • /
    • 2009
  • In this paper, we develop theoretical game models to determine the level of government subsidies for banks to provide policy loans to Innovative SMEs(small and medium sized enterprises) through banks, which otherwise would not finance them for the sake of their own profitability. For this, we compare net cash flows of each bank using different strategies against high risk innovative SMEs. A bank can decide whether to provide them loans or not In each period. Following Kim(2003)'s Infinite horizon model on the soft budget constraint, we introduce a situation in which banks compete against each other for higher net long-term payoffs from their loans to innovative SMEs and non-innovative SMEs. From the models, we show that competition among banks in general leads to a tighter decision against innovative SMEs, as a Nash equilibrium. It is not because the government bank is simply loose in providing loans, but because competition among commercial banks for fewer riskier borrowers results in tighter loan decisions against innovative SMEs. Thus, the competitive market for policy loans to innovative SMEs fails to reach the socially optimal level of loans for innovative SMMs. Commercial banks in the competitive market may require additional supports from the government to make up for the differences in their payoffs to support innovative SMEs, possibly much riskier due to moral hazards and poor discounted cash flows. The monopolistic government bank might also request such supports from the government to fund otherwise unqualified SMEs. We calculate an optimal level of governmental support for banks to guarantee funding such high-risk innovative SMEs over periods without deviating from their optimal Nash equilibrium policies.

New Approach in Magnetic Potential Field Continuation by FFT (FFT를 이용한 자력 포텐셜필드 자료의 수직방향의 연속에 대한 새로운 접근방법)

  • Kim, Hyung-Rae;Hwang, Jong-Sun;Suh, Man-Cheol;Kim, Jeong-Woo
    • Economic and Environmental Geology
    • /
    • v.43 no.3
    • /
    • pp.249-258
    • /
    • 2010
  • In general, a crustal geomagnetic (or gravity) anomaly compiled at one altitude can be estimated at a different altitude by continuation using the Fourier transform (FT). However, in case of continuation with a great distance between the two elevations, or, in particular, in case of downward continuation, the estimated anomalies by the FT are likely to be mathematically unstable so that the estimated values are not realistic. To solve this problem, two independently measured magnetic field anomalies at different altitudes, such as aeromagnetic and satellite magnetic observations, are implemented to estimate values at in-between altitude for better understanding and interpreting geophysical and geological features. This ‘'dual continuation’' technique is straightforward in the FT and gives a more realistic estimate in all altitudes when we simulated with a set of prismatic bodies at different altitudes. This implies that we add up another constraint like satellite-based observations on the geopotential field modeling for the non-unique geological and geophysical problems to a conventional Fourier-type continuation technique with a single set of observations.

Optimal Design of Batch-Storage Network with Finite Intermediate Storage (저장조 용량제약이 있는 회분식 공정-저장조 그물망 구조의 최적설계)

  • Kim, Hyung-Min;Kim, Kyoo-Nyun;Lee, Gyeong-Beom
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.10
    • /
    • pp.867-873
    • /
    • 2001
  • The purpose of this study is to find analytic solution of determining the optimal capacity (lot-size) of multiproduct acyclic multistage production and inventory system to meet the finished product demand under the constraint of finite intermediate storage. Intermediate storage is a practical way to mitigate the material flow imbalance through the line of supply and demand chain. However, the cost of constructing and operating storage facilities is becoming substantial because of increasing land value, environmental and safety concern. Therefore, reasonable decision-making about the capacity of processes and storage units is an important subject for industries. The industrial solution for this subject is to use the classical economic lot sizing method, EOQ/EPQ(Economic Order Quantity/Economic Production Quantity) model, incorporated with practical experience. But EOQ/EPQ model is not suitable for the chemical plant design with highly interlinked processes and storage units because it is developed based on single product and single stage. This study overcomes the limitation of the classical lot sizing method. The superstructure of the plant consists of the network of serially and/or parallelly interlinked non-continuous processes and storage units. The processes transform a set of feedstock materials into another set of products with constant conversion factors. A novel production and inventory analysis method, PSW(Periodic Square Wave) model, is applied to describe the detail material flows among equipments. The objective function of this study is minimizing the total cost composed of setup and inventory holding cost. The advantage of PSW model comes from the fact that the model provides a set of simple analytic solutions in spite of realistic description of the material flows between processes and storage units. the resulting simple analytic solution can greatly enhance the proper and quick investment decision for the preliminary plant design problem confronted with economic situation.

  • PDF

A Novel Adaptive Routing Algorithm for Delay-Sensitive Service in Multihop LEO Satellite Network

  • Liu, Liang;Zhang, Tao;Lu, Yong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.8
    • /
    • pp.3551-3567
    • /
    • 2016
  • The Low Earth Orbit satellite network has the unique characteristics of the non-uniform and time-variant traffic load distribution, which often causes severe link congestion and thus results in poor performance for delay-sensitive flows, especially when the network is heavily loaded. To solve this problem, a novel adaptive routing algorithm, referred to as the delay-oriented adaptive routing algorithm (DOAR), is proposed. Different from current reactive schemes, DOAR employs Destination-Sequenced Distance-Vector (DSDV) routing algorithm, which is a proactive scheme. DSDV is extended to a multipath QoS version to generate alternative routes in active with real-time delay metric, which leads to two significant advantages. First, the flows can be timely and accurately detected for route adjustment. Second, it enables fast, flexible, and optimized QoS matching between the alternative routes and adjustment requiring flows and meanwhile avoids delay growth caused by increased hop number and diffused congestion range. In addition, a retrospective route adjustment requesting scheme is designed in DOAR to enlarge the alternative routes set in the severe congestion state in a large area. Simulation result suggests that DOAR performs better than typical adaptive routing algorithms in terms of the throughput and the delay in a variety of traffic intensity.

An Analysis of the Price Elasticity of Electricity Demand and Price Reform in the Korean Residential Sector Under Block Rate Pricing (구간별 가격체계를 고려한 우리나라 주택용 전력수요의 가격탄력성과 전력누진요금제 조정방안)

  • Jo, Ha-Hyun;Jang, Min-Woo
    • Environmental and Resource Economics Review
    • /
    • v.24 no.2
    • /
    • pp.365-410
    • /
    • 2015
  • Block-rate structures are widely used in utility-pricing, including the Korean residential electricity sector. In the case of the current pricing structure, Korean citizens are highly concerned about incurring excessive electricity costs. For these reasons, there have been many discussions concerning mitigation of the strict pricing structure. Existing studies on the residential electricity demand function under block-rate structure have the following three issues - the consumer's budget constraint is non-linear, perceived price under block-rate structure is uncertain, block-rate structure has endogeneity in the price variable. In this context, this paper estimates the residential electricity demand function using micro-level household expenditure data and simulates the impact of alternative block-pricing schedules.

Critical Loads and Post-Buckling Behaviour of Simply Supported Tapered Columns (단순지지(單純支持) 변단면(變斷面) 기둥의 임계하중(臨界荷重) 및 후좌굴(後挫屈) 거동(擧動))

  • Lee, Byoung Koo;Oh, Sang Jin;Mo, Jeong Man
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.4
    • /
    • pp.17-26
    • /
    • 1991
  • Numerical methods are developed to obtain the critical loads and to analyze the post-buckling behaviour of the linearly varying tapered columns. The non-dimensional differential equations governing the elastica of post buckled column are derived by third order and solved numerically using the Runge-Kutta method and Regula-Falsi method. Three kinds of cross-sectional shape with simply supported end constraint are applied in unmerical examples. As the numerical results, the equlibrium paths. the typical elastica of post buckled columns and the critical load vs. section ratio curves are presented in figures. Also, the effects of cross-sectional shape factor on critical loads and postbuckling behaviour are presented in tables.

  • PDF

Parallelism Measurement for Guide Rails of Precision Machine Tools (정밀 공작기계 안내면의 평행도 측정)

  • Hwang J.H.;Park C.H.;Gao W.;Kim S.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.792-795
    • /
    • 2005
  • The guide-ways of precision machine tools are one of important element of machine tools. It has usually a pair of surfaces for constraint of one direction with bearing. In the case of precision machine tools, non-contact bearing such as hydrostatic bearing and aerostatic bearing is adopted usually. In this case, profiles of rails has effect on straightness and the clearance of bearing has effect on stiffness of guide way, which changes to higher if clearance changes to smaller. The clearance is varied along moving table according to relative distance of pair of rails. The relative distance of pair of rail can be divided by three properties. First and second properties are straightness of each pair of rail and bearing pad. And, third is parallelism about pair of rails and pairs of bearing pad. There are several methods for measuring straightness of each surface such as reversal method, sequential two point method, and way straightness. These straightness measuring methods are always acquiring deviation of profile from eliminating linear fitted inclined line and don't have the information of parallelism. Therefore, to get the small clearance for high stiffness, the straightness of rail and bearing pad and parallelism about pair of rails and pair of bearing pads are measured for correction such as regrinding, reassembling and lapping. In this research, new and easy method for measuring parallelism of pair of rails is suggested. Two displacement probe and sensor stage, which is carry on the displacement sensor, are needed. The simulation and experiment was accomplished about pair of horizontal guide way to confirm the measurement of parallelism. And, the third probe is added to measure the straightness of each rails by sequential two point method. From the estimation of combined these two methods, it is confirmed that the profiles of a pairs of rails can be measured.

  • PDF

Sensitivity Analysis to Relationship Between Process Parameter and Top-bead with in an Automatic $CO_2$ Welding ($CO_2$ 자동용접의 공정변수와 표면 비드폭의 상관관계에 관한 민감도 분석)

  • Seo J.H.;Kim I.S.;Kim I.J.;Son J.S.;Kim H.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1845-1848
    • /
    • 2005
  • The automatic $CO_2$ welding is a manufacturing process to produce high quality joints for metal and it could provide a capability of full automation to enhance productivity. Despite the widespread use in the various manufacturing industries, the full automation of the robotic $CO_2$ welding has not yet been achieved partly because the mathematical model for the process parameters of a given welding task is not fully understood and quantified. Several mathematical models to control welding quality, productivity, microstructure and weld properties in arc welding processes have been studied. However, it is not an easy task to apply them to the various practical situations because the relationship between the process parameters and the bead geometry is non-linear and also they are usually dependent on the specific experimental results. Practically, it is difficult, but important to know how to establish a mathematical model that can predict the result of the actual welding process and how to select the optimum welding condition under a certain constraint. In this research, an attempt has been made to develop an intelligent algorithm to predict the weld geometry (top-bead width, top-bead height, back-bead width and back-bead height) as a function of key process parameters in the robotic $CO_2$welding. A sensitivity analysis has been conducted and compared the relative impact of three process parameters on bead geometry in order to verify the measurement errors on the values of the uncertainty in estimated parameters.

  • PDF

On the Oil Film Behaviors of Engine Bearing Considering Crankshaft Misalignment (크랭크축 경사도를 고려한 엔진 베어링의 유막거동에 관한 연구)

  • Kim, Han-Goo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3119-3124
    • /
    • 2010
  • The purpose of this paper is to analyze dynamic behaviors of the oil film thickness and engine bearings in both aligned and misaligned operation conditions of a crankshaft using computer simulation techniques. A crankshaft as an elastic body is modeled for a misaligned crankshaft which is very important design parameter of the film thickness and engine bearings. In this analysis, a dynamic characteristic of a minimum oil film is analyzed based on the elastohydrodynamic lubrication theory. The boundary conditions for analyzing the film behaviors include non-linear constraint forces and bending moments in engine bearings. The more expedient model of an engine bearing is extended to consider the effect of crankshaft misalignment. The computed results indicate that the minimum oil film thickness that causes a major influence on the performance of engine bearings has showed a decrease of 16% to 24% for the misaligned crankshaft compared with an aligned crankshaft. The computed results show that the misalignment of a crankshaft inevitably brings the reduction of minimum oil film thickness and this may increase the failure of a bearing. These results as design parameters are very useful for a bearing designer as a firm reference data of an automotive engine.

An Analysis for Process Parameters in the Automatic $CO_2$ Welding Using the Taguchi Method (다구찌 방법을 이용한 $CO_2$ 자동용접의 공정변수 분석)

  • 김인주;박창언;김일수;성백섭;손준식;유관종;김학형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.596-599
    • /
    • 2004
  • The robotic $CO_2$ welding is a manufacturing process to produce high quality joints for metal and it could provide a capability of full automation to enhance productivity. Despite the widespread use in the various manufacturing industries, the full automation of the robotic $CO_2$ welding has not yet been achieved partly because the mathematical model for the process parameters of a given welding task is not fully understood and quantified. Several mathematical models to control welding quality, productivity, microstructure and weld properties in arc welding processes have been studied. However, it is not an easy task to apply them to the various practical situations because the relationship between the process parameters and the bead geometry is non-linear and also they are usually dependent on the specific experimental results. Practically, it is difficult, but important to know how to establish a mathematical model that can predict the result of the actual welding process and how to select the optimum welding condition under a certain constraint. In this research, an attempt has been made to develop an intelligent algorithm to predict the weld geometry (top-bead width, top-bead height, back-bead width and back-bead height) as a function of key process parameters in the robotic $CO_2$welding. To achieve this above objective, Taguchi method was employed using five different process parameters (tip gap, gas flow rate, welding speed, arc current, welding voltage) as a guide for optimization of process parameters.

  • PDF