• Title/Summary/Keyword: Non-conducting metal coating

Search Result 4, Processing Time 0.018 seconds

On Feasibility Study of the Charged Particle Beam Pretreatment Process for Non-conducting Metal Coating (무전도 금속 증착을 위한 하전 입자빔 전처리 공정의 타당성 연구)

  • Na, Myung Hwan;Park, Young Sik;Shim, Ha-Mong;Chun, Young Ho
    • Journal of Korean Society for Quality Management
    • /
    • v.42 no.2
    • /
    • pp.179-187
    • /
    • 2014
  • Purpose: Since several problems were found when present non-conducting metal coating process was applied to mass production, we study and develop to improve those problems. Methods: In this paper, a couple of analysis methods such as surface hardness, XPS spectrum analysis, morphology, and reflection ratio were used. Results: This paper suggest a new possibility of Non-conducting thin metal coating method that has quality of mass production phase without UV coating process. Conclusion: By the result of analysis, we can set optimized process conditions of the electro deposition coating using electron beam.

Optimization for Electro Deposition Process of PC/ABS Resin Surface Treatment (수지의 하전 입자빔 전처리 공정의 최적화)

  • Park, Young Sik;Shim, Ha-Mong;Na, Myung Hwan;Song, Ho-Chun;Yoon, Sanghoo;Jang, Keun Sam
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.4
    • /
    • pp.543-552
    • /
    • 2014
  • High bandwidth RF such as Bluetooth, GPRS, EDGE, 3GSM, HSDPA is papular in the mobile phone market. A non-conducting metal coating process requires an e-beam deposition of metal, two steps of UV hard coating primer and top coating; however, it is inefficient. We navigate to the electron beam irradiation conditions(resin surface treatment conditions) in the PC/ABS resin injection process. By analyzing the experimental results, we find the optimum development conditions for the electro deposition pre-treatment process and mass production lines using the plasma generated electron beam source.

Frequency-Distance Responses in SECM-EQCM: A Novel Method for Calibration of the Tip-Sample Distance$\S$

  • 신명선;전일철
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.11
    • /
    • pp.1227-1232
    • /
    • 1998
  • The frequency response on the tip-sample distance in scanning electrochemical microscopy (SECM) that is combined with an electrochemical quartz crystal microbalance (EQCM) is described. The oscillation frequency of the EQCM increases rapidly when the SECM tip is very close to the substrate electrode surface. This frequency increase is reproducible regardless of the current feedback in SECM, which is attributed to the stress caused by the tip pressing the quartz crystal. It is useful to calibrate the tip-sample distance with respect to the frequency change when a combined system of SECM and EQCM (SECM-EQCM) is used. This method could be applied to several cases such as rigid metal electrode and non-conducting or partially conducting polymer coating prepared on the quartz crystal regardless of the feedback current.

Development of PU Nanoweb Based Electroconductive Textiles and Exploration of Applicability as a Transmission Line for Smart Clothing (PU 나노웹 기반 전기전도성 텍스타일의 개발 및 스마트의류용 신호전달선으로의 적용 가능성 탐색)

  • Jang, Eunji;Cho, Gilsoo
    • Fashion & Textile Research Journal
    • /
    • v.20 no.1
    • /
    • pp.101-107
    • /
    • 2018
  • The purpose of this study is to develop the electroconductive textiles based on polyurethane(PU) nanoweb and to explore that it is applicable to smart clothing. The electroconductive textiles developed by coating 2.0 wt% aqueous dispersed non-oxidized graphene paste on the surface of PU nanoweb. The fabricated electroconductive nanoweb was applied as a transmission line to connect the LED lamp, and the brightness of the LED lamp was measured to confirm its performance. The nanoweb transmission line was fixed by two methods(seam sealing tape, embroidering) to connect the LED lamp and AA batteries. The results as follows, the brightness of the LED lamp fixed with seam sealing tape was about 82 lux, and which fixed with embroidering was about 57 lux. It represents that the nanoweb transmission line which fixed with the seam sealing tape has better electrical signal transmitting because the lux value higher than the one fixed by embroidering. In order to compare the performance of the nanoweb transmission line and the metal wire, we connected the LED lamp with copper wire. The brightness of copper wire connected LED lamp was about 193 lux. Although the electrical signal strength of the nanoweb transmission line was weaker than the copper wire, it was reachable to operate LED lamp. The results of this study will provide a basic data to develop the textile based electronic devices, and conducting wire for smart clothing.