• 제목/요약/키워드: Non-circular nozzle exit

검색결과 5건 처리시간 0.021초

노즐 형상에 따른 Effervescent 이유체 노즐의 분무특성 (Atomization Characteristics of Effervescent Twin-fluid Nozzle with Different Nozzle Shapes)

  • 이상지;홍정구
    • 한국분무공학회지
    • /
    • 제22권3호
    • /
    • pp.146-152
    • /
    • 2017
  • An experimental study was carried out to investigate the spray characteristics of non-circular effervescent twin-fluid nozzles. For this purpose, two types of non-circular nozzles (E1, E2) and circular nozzle (C) were used. Three types of aerorators with hole diameters of 1.2, 1.7 and 2.1 mm were used. Each aerorator has a total of 12 holes. It is defined by area ratio which is ratio of exit orifice area and aerator hole area. Experiments were carried out by controlling the amount of air flowing after fixing the flow rate of the liquid, and the nozzle internal pressure and SMD were measured, and the jet image was taken from the nozzles. The discharge coefficients of the three kinds of nozzles were compared with the used in plain orifice's equation and the Jedelsky's equation, and the Jedelsky's equation was found to be about 3 times larger. In addition, empirical formula based on ALR, which is the largest variable in Jedelsky's equation, was derived. The droplet sizes(SMD) were found to be smaller in the non-circular shape than in the circular shape, which is concluded to be caused by the difference of the discharge coefficients.

비원형 Effervescent Type 이유체노즐의 Discharge Coefficient에 관한 실험적 연구 (An Experimental Study of Discharge Coefficient with Non-Circular Effervescent Type Twin-fluid Nozzle)

  • 이상지;박형선;홍정구
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.682-685
    • /
    • 2017
  • 본 연구는 비원형 Effervescent Type 이유체 노즐의 분사 특성을 조사하기 위한 실험적 연구를 수행하였다. 이를 위해 거의 동일한 노즐 출구 면적으로 가공한 2종류의 비원형 노즐 (E1, E2)과 1종류의 원형 노즐 (C)을 대상으로 비교 실험을 진행하였다. 이때 노즐에 장착된 Aerorator는 노즐 출구 면적과의 Aspect Ratio를 맞추기 위해 지름이 다른 3종류를 사용하였다. 따라서 각 노즐마다 3가지의 Aspect Ratio에 따라 3번의 실험을 진행하였으며, 전체 총 9종의 실험이 진행되었다. 실험은 Liquid의 유량을 고정시킨 후, 유입되는 Air의 양을 제어하며 진행하였으며, 노즐 내부 압력과 액적의 크기 (SMD)를 측정하고 노즐에서 분사 이미지를 촬영하였다. 이를 통해 3종의 노즐의 유량 계수를 압력 분무방정식과 Jedelsky 방정식을 비교 계산하였고, Jedelsky 방정식이 약 4배 정도 더 큰 값을 갖는 것을 확인하였다. 노즐에서 분사되는 SMD는 원형보다 비원형에서 더 작은 값을 갖는 것으로 나타났으며, 이는 유량 계수 값의 차이 의해 야기된 것으로 예상된다.

  • PDF

터빈블레이드의 냉각에서 충돌제트에 의해 변화되는 유동 및 열전달 특성에 관한 수치해석적 연구 (A numerical study of flow and heat transfer characteristics varied by impingement jet in turbine blade cooling)

  • 이정희;김신일;유홍선;최영기
    • 대한기계학회논문집B
    • /
    • 제20권12호
    • /
    • pp.4013-4026
    • /
    • 1996
  • A numerical simulation has been carried out for the jet impinging on a flat plate and a semi-circular concave surface. In this computation finite volume method was employed to solve the full Navier-Stokes equation based on a non-orthogonal coordinate with non staggered variable arrangement. The standard k-.epsilon. turbulent model and low Reynolds number k-.epsilon. model(Launder-Sharmar model) with Yap's correction were adapted. The accuracy of the numerical calculations were compared with various experimental data reported in the literature and showed good predictions of centerline velocity decay, wall pressure distribution and skin friction. For the jet impingement on a semi-circular concave surface, potential core length was calculated for two different nozzle(round edged nozzle and rectangular edged nozzle) to consider effects of the nozzle shape. The result showed that round edged nozzle had longer potential core length than rectangular edged nozzle for the same condition. Heat transfer rate along the concave surface with constant heat flux was calculated for various nozzle exit to surface distance(H/B) in the condition of same jet velocity. The maximum local Nusselt number at the stagnation point occurred at H/B = 8 where the centerline turbulent intensity had maximum value. The predicted Nusselt number showed good agreement with the experimental data at the stagnation point. However heat transfer predictions along the downstream were underestimated. This results suggest that the improved turbulence modeling is required.

The effect of the nozzle exit geometry on the flow characteristics of the free condensing jet

  • Jaewon Myeong;Seungwan Kim;Dehee Kim;Jongtae Kim;Weon Gyu Shin
    • Nuclear Engineering and Technology
    • /
    • 제56권7호
    • /
    • pp.2545-2556
    • /
    • 2024
  • In the present study, we investigated the velocity distribution, temperature distribution and condensation characteristics of steam jet issuing from four different orifice nozzles with a Reynolds number of approximately 79,000 using the phase Doppler particle analyzer system and a K-type thermocouple. The steam jet discharged from the orifice nozzle has a wider jet width compared to pipe nozzle because of the vena-contracta which can enhance the mixing of steam jet with the ambient air. Therefore, the orifice jet showed less condensation due to its wideness, resulting in small velocity decay rate and large temperature decay rate due to momentum conservation and decreased latent heat release compared to pipe nozzle, respectively. Also, the wider jet width of the orifice jet resulted in larger velocity and temperature spread rate compared to the pipe jet. In addition, the increase in the aspect ratio of the orifice jet led to more condensation and larger velocity spread rate and temperature spread rate due to both the vena-contracta and axis-switching effect, resulting in the increase of jet entrainment.

적외선열화상처리장치를 이용한 충돌제트의 전열특성에 관한 연구 (A Study on Heat Transfer Characteristics of Impinging Jet Using Infared Thermal Image Processing System)

  • 김동균;배석태;김시범;이영호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.711-716
    • /
    • 2001
  • This paper presents an information about the heat transfer characteristics of impinging jet in eletronic equipment with infrared image processing unit. There have been many experimental investigations and theoretical studies on impinging jet because of application in a wide variety of industrial process including electronic equipment. In this study, we used infrared image processing unit to visualize heat transfer characteristics of impinging jet in electronic equipment. Infrared image processing unit is one of non-contact temperature measuring methods and it is possible to minimize flow resistance and this measurement is comparatively accurate. The main parameters are nozzle exit angle $(30^{\circ},\;45^{\circ},\;60^{\circ},\;75^{\circ},\;90^{\circ})$ and distance between nozzle and heat source is fixed 6d("d" is diameter of circular nozzle(10 mm). Reynolds number is 4500.

  • PDF