• 제목/요약/키워드: Non-adhesive

검색결과 318건 처리시간 0.033초

유효강성을 줄인 새로운 형상의 건식부착물 제작 (Fabrication of a novel dry adhesive structure with reduced effective stiffness)

  • 조영삼;정대환;한혁섭;김완두
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.421-425
    • /
    • 2007
  • In the fabrication of dry adhesive structure, increasing contact-points or contact-area is the primary goal because the adhesive force grows in proportion to the contact-area. The simplest way to extend the contact surface is the fabrication by using soft materials. However, the column-array structure could confront the matting phenomenon which columns are stuck together. Therefore, we need a novel design to reduce the effective stiffness with adequate stiff materials like a gecko's setae. In this study, we propose a novel design for the dry adhesive structure. Moreover, we analyzed whether the adhesive structure conforms the rough surface sufficiently through finite element method adopted the non-bonding interaction as the body force. Also, we fabricated the novel structures via UV lithography and some techniques. In addition, we examined the adhesive force of the novel structures.

  • PDF

해산 경골어류 자리 돔과, Tomato Clown Anemonefish (Amphiprion frenatus)의 수정란 난막 미세구조 (Ultrastructure of Fertilized Egg Envelope in the Tomato Clown Anemonefish, Amphiprion freatus (Pomacentridae : Marine Teleostei))

  • 김동희;류동석;등영건
    • Applied Microscopy
    • /
    • 제28권3호
    • /
    • pp.273-282
    • /
    • 1998
  • Ultrastructure of fertilized egg envelope in the tomato clown anemonefish (Amphiprion freatus) was examined by mean of light, scanning and transmission electron microscopies. The fertilized egg of tomato clown anemonefish was of non-transparent, ellipsoidal, adhesive and non-floted type, and there were numerous oil droplets in the yolk sac and adhesive filaments in the area of the animal pole. The outer surface of egg envelope was smooth. The fertilized egg envelope consisted of two distinct layers; a non-adhesive outer electron-dense layer and an inner layer, consisting of five horizontal low electron-dense lamellae alternating with the middle electron dense interlamellae.

  • PDF

비전도성 접착제로 국부적으로 둘러싸인 인터록킹 접속구조를 이용한 플립칩 공정 (A Flip Chip Process Using an Interlocking-Joint Structure Locally Surrounded by Non-conductive Adhesive)

  • 최정열;오태성
    • 대한금속재료학회지
    • /
    • 제50권10호
    • /
    • pp.785-792
    • /
    • 2012
  • A new flip chip structure consisting of interlocking joints locally surrounded by non-conductive adhesive was investigated in order to improve the contact resistance characteristics and prevent the parasitic capacitance increase. The average contact resistance of the interlocking joints was substantially reduced from $135m{\Omega}$ to $79m{\Omega}$ by increasing the flip chip bonding pressure from 85 MPa to 185 MPa. Improvement of the contact resistance characteristics at higher bonding pressure was attributed not only to the increased contact area between Cu chip bumps and Sn pads, but also to the severe plastic deformation of Sn pads caused during formation of the interlocking-joint structure. The parasitic capacitance increase due to the non-conductive adhesive locally surrounding the flip chip joints was estimated to be as small as 12.5%.

Non-tubular bonded joint under torsion: Theory and numerical validation

  • Pugno, Nicola;Surace, Giuseppe
    • Structural Engineering and Mechanics
    • /
    • 제10권2호
    • /
    • pp.125-138
    • /
    • 2000
  • The paper analyzes the problem of torsion in an adhesive non-tubular bonded single-lap joint. The joint considered consists of two thin rectangular section beams bonded together along a side surface. Assuming the materials involved to be governed by linear elastic laws, equilibrium and compatibility equations were used to arrive at an integro-differential relation whose solution makes it possible to determine torsional moment section by section in the bonded joint between the two beams. This is then used to determine the predominant stress and strain field at the beam-adhesive interface (stress field along the direction perpendicular to the interface plane, equivalent to the applied torsional moment and the corresponding strain field) and the joint's elastic strain (absolute and relative rotations of the bonded beam cross sections). All the relations presented were obtained in closed form. Results obtained theoretically are compared with those given by a three dimensional finite element numerical model. Theoretical and numerical analysis agree satisfactorily.

플립칩 본딩용 비전도성 접착제의 속경화거동 평가기법 (Evaluation Method for Snap Cure Behavior of Non-conductive Paste for Flip Chip Bonding)

  • 민경은;이준식;이소정;이성;김준기
    • Journal of Welding and Joining
    • /
    • 제33권5호
    • /
    • pp.41-46
    • /
    • 2015
  • The snap cure NCP(non-conducive paste) adhesive material is essentially required for the high productivity flip chip bonding process. In this study, the accessibility of DEA(dielectric analysis) method for the evaluation of snap cure behavior was investigated with comparison to the isothermal DSC(differential scanning calorimetry) method. NCP adhesive was mainly formulated with epoxy resin and imidazole curing agent. Even though there were some noise in the dielectric loss factor curve measured by DEA, the cure start and completion points could be specified clearly through the data processing of cumulation and deviation method. Degree of cure by DEA method which was measured from the variation of the dielectric loss factor of adhesive material was corresponded to about 80% of the degree of cure by DSC method which was measured from the heat of curing reaction. Because the adhesive joint cured to the degree of 80% in the view point of chemical reaction reveals the sufficient mechanical strength, DEA method is expected to be used effectively in the estimation of the high speed curing behavior of snap cure type NCP adhesive material for flip chip bonding.

건식벽체에 폴리싱타일을 적용하기 위한 유기.무기질 혼합계 타일접착제 종류에 따른 부착안정성 평가에 관한 연구 (A Study on the Estimation of Adhesive Stability According to Organic.lnorganic Mixed Tile Bond Type for Application of Polishing Tile to Dry Wall System)

  • 오상근;이기장;유재강;김수련;이성일
    • 한국건축시공학회지
    • /
    • 제2권3호
    • /
    • pp.163-170
    • /
    • 2002
  • Recently, polishing tile(porcelain homogeneous polished tile) was used in the construction field as a finishing material. But, there happened some problems such as tile exfoliation by construction condition in early ages. Also, for use of polishing tile in the dry wall system which used to lightweight wall, the examination of adhesive stability of polishing tile is needed. In this study, adhesive strength of Polishing tile was investigated by tile bond types on gypsum board and non asbestos board coated by tar-urethane and Polymer modified cementitious waterproofing membrane(Series I). Then, the effect of heat stress and vibration was estimated on gypsum and non asbestos board(Series II). As the result of study are the follows; (1) Polishing tile(600$\times$400mm) construction on waterproofing layer : Both laboratory estimation and spot examination sieve were happened that fall of tile because their hardening speed is late. (2) To using powder style adhesives in the dry wail with waterproofing layer : Adhesive strength of tile is Influenced by interface bond area and base side condition. (3) Shock and heat stresses : obvious decline of adhesive strength is not happened

돔 분리형 연소관의 접착 길이에 따른 체결부의 구조해석 (Structural analysis of joint part by adhesive length of a composite pressure vessel with separated dome)

  • 전광우;신광복;황태경
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.933-937
    • /
    • 2011
  • 돔 분리형 복합재 연소관의 접합 체결부 최적의 설계 길이를 결정하기 위해 접합부 길이변화에 따른 구조해석을 수행하였다. 이때, 접착 체결부의 길이는 50mm에서 300mm의 범위를 갖는다. 무응력상태의 초기 접합부 길이대비 응력구배가 발생하는 구간의 길이를 "응력구배 길이 비"로 정의하고 이를 목적함수로 선정하였다. 구조해석 결과 접착 체결부의 길이가 200mm 이상으로 증가할 경우 응력구배 길이 비의 증가가 서서히 나타남을 확인하였다. 이는, 접착 체결부에 적용되는 2,500psi 내압에서 구조적 안전성을 확보하는 최적화된 접착 체결부의 길이가 200mm임을 의미한다.

  • PDF

교원질과 당단백이 치수섬유모세포에 미치는 효과에 관한 연구 (THE EFFECT OF ADHESIVE GLYCOPROTEIN ON THE ACTIVITY OF HUMAN PULP FIBROBLAST)

  • 김주연;최호영
    • Restorative Dentistry and Endodontics
    • /
    • 제21권2호
    • /
    • pp.546-558
    • /
    • 1996
  • The purpose of this vitro study was to evaluate the activity of human pulpal cells to adhesive glycoprotein-coated and non-coated culture dishes. Well known adhesive glycoproteins were used, such as type I collagen, type IV collagen, fibronectin, laminin, and vitronectin. Each adhesive glycoproteins applied onto the culture dishes. In this study, the protein coated and non-coated dishes were classified as each groups. Human pulpal cells cultured onto each groups. After 24 hours, 48 hours, 72 hours incubation time, radioactivity with scintillation counter for evaluation of the activity of human pulpal cells. The results as follows : 1. After 24 hours incubation time, activity of human pulpal cells were best in laminin-coated group among groups. Then fibronectin, type I collagen group were better, and all proteins were better than control. 2. After 48 hours incubation time, activity of human pulpal cells were best in fibronectin coated group. 3. After 72 hours incubation time, activity of human pulpal cells were not significantly different in all of adhesive glycoproteins. 4. After 24 hours incubation time, activity of human pulpal cells were best in fibronectin and laminin coated group. Activity of human pulpal cells in type I collagen coated group were better after 24 hours incubation time then 48 hours incubation time.

  • PDF

Numerical analysis of the combined aging and fillet effect of the adhesive on the mechanical behavior of a single lap joint of type Aluminum/Aluminum

  • Medjdoub, S.M.;Madani, K.;Rezgani, L.;Mallarino, S.;Touzain, S.;Campilho, R.D.S.G.
    • Structural Engineering and Mechanics
    • /
    • 제83권5호
    • /
    • pp.693-707
    • /
    • 2022
  • Bonded joints have proven their performance against conventional joining processes such as welding, riveting and bolting. The single-lap joint is the most widely used to characterize adhesive joints in tensile-shear loadings. However, the high stress concentrations in the adhesive joint due to the non-linearity of the applied loads generate a bending moment in the joint, resulting in high stresses at the adhesive edges. Geometric optimization of the bonded joint to reduce this high stress concentration prompted various researchers to perform geometric modifications of the adhesive and adherends at their free edges. Modifying both edges of the adhesive (spew) and the adherends (bevel) has proven to be an effective solution to reduce stresses at both edges and improve stress transfer at the inner part of the adhesive layer. The majority of research aimed at improving the geometry of the plate and adhesive edges has not considered the effect of temperature and water absorption in evaluating the strength of the joint. The objective of this work is to analyze, by the finite element method, the stress distribution in an adhesive joint between two 2024-T3 aluminum plates. The effects of the adhesive fillet and adherend bevel on the bonded joint stresses were taken into account. On the other hand, degradation of the mechanical properties of the adhesive following its exposure to moisture and temperature was found. The results clearly showed that the modification of the edges of the adhesive and of the bonding agent have an important role in the durability of the bond. Although the modification of the adhesive and bonding edges significantly improves the joint strength, the simultaneous exposure of the joint to temperature and moisture generates high stress concentrations in the adhesive joint that, in most cases, can easily reach the failure point of the material even at low applied stresses.

농산물용 복합 골판지 제조를 위한 부직포 및 신규 접착시스템에 대한 연구 (Development of nonwoven fabric and new adhesive system to manufacture hybrid corrugated board)

  • 이지영;윤희열;오석주;성용주;김병호;임기백;최재성;김선영
    • 펄프종이기술
    • /
    • 제44권3호
    • /
    • pp.49-55
    • /
    • 2012
  • Even though corrugated boards are the most common packaging materials for agricultural products, conventional corrugated boards are not able to maintain the freshness of agricultural products. In order to overcome the limitations of conventional corrugated boards, a new hybrid corrugated board-composed of linerboard, a corrugating medium, and non-woven fabric-was designed to possess antibacterial, high porous and shock-absorbing properties. In this study, we compared the physical properties of non-woven fabric to those of the base papers of conventional corrugated boards and developed a new adhesive system as a first step toward manufacturing the hybrid corrugated board. We found that the non-woven fabric, which had relatively high elongation, was applicable in the corrugated board process, and that the manufacturing conditions must be controlled in order to prevent the break of the non-woven fabric. The mixture of starch and styrene-butadiene (SB) latex showed high adhesive strength, but the addition level of SB latex should not exceed 30% in starch solution.