• Title/Summary/Keyword: Non-Stationary Time Series

Search Result 81, Processing Time 0.026 seconds

An extension of Markov chain models for estimating transition probabilities (추이확률의 추정을 위한 확장된 Markov Chain 모형)

  • 강정혁
    • Korean Management Science Review
    • /
    • v.10 no.2
    • /
    • pp.27-42
    • /
    • 1993
  • Markov chain models can be used to predict the state of the system in the future. We extend the existing Markov chain models in two ways. For the stationary model, we propose a procedure that obtains the transition probabilities by appling the empirical Bayes method, in which the parameters of the prior distribution in the Bayes estimator are obtained on the collaternal micro data. For non-stationary model, we suggest a procedure that obtains a time-varying transition probabilities as a function of the exogenous variables. To illustrate the effectiveness of our extended models, the models are applied to the macro and micro time-series data generated from actual survey. Our stationary model yields reliable parameter values of the prior distribution. And our non-stationary model can predict the variable transition probabilities effectively.

  • PDF

A detection procedure for a variance change points in AR(1) models (AR(1) 모형에서 분산변화점의 탐지절차)

  • 류귀열;조신섭
    • The Korean Journal of Applied Statistics
    • /
    • v.1 no.1
    • /
    • pp.57-67
    • /
    • 1987
  • In time series analysis, we usually require the assumption that time series are stationary. But we may often encounter time series whose parameter values subject to change. Inthis paper w propose a method which can detect the variance change point in anAR(1) model which is subjct to changesat non-predictable time points. Proposed method is compared with other methods using the simulated and real data.

Design of Multiple Model Fuzzy Predictors using Data Preprocessing and its Application (데이터 전처리를 이용한 다중 모델 퍼지 예측기의 설계 및 응용)

  • Bang, Young-Keun;Lee, Chul-Heui
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.173-180
    • /
    • 2009
  • It is difficult to predict non-stationary or chaotic time series which includes the drift and/or the non-linearity as well as uncertainty. To solve it, we propose an effective prediction method which adopts data preprocessing and multiple model TS fuzzy predictors combined with model selection mechanism. In data preprocessing procedure, the candidates of the optimal difference interval are determined based on the correlation analysis, and corresponding difference data sets are generated in order to use them as predictor input instead of the original ones because the difference data can stabilize the statistical characteristics of those time series and better reveals their implicit properties. Then, TS fuzzy predictors are constructed for multiple model bank, where k-means clustering algorithm is used for fuzzy partition of input space, and the least squares method is applied to parameter identification of fuzzy rules. Among the predictors in the model bank, the one which best minimizes the performance index is selected, and it is used for prediction thereafter. Finally, the error compensation procedure based on correlation analysis is added to improve the prediction accuracy. Some computer simulations are performed to verify the effectiveness of the proposed method.

Empirical decomposition method for modeless component and its application to VIV analysis

  • Chen, Zheng-Shou;Park, Yeon-Seok;Wang, Li-ping;Kim, Wu-Joan;Sun, Meng;Li, Qiang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.2
    • /
    • pp.301-314
    • /
    • 2015
  • Aiming at accurately distinguishing modeless component and natural vibration mode terms from data series of nonlinear and non-stationary processes, such as Vortex-Induced Vibration (VIV), a new empirical mode decomposition method has been developed in this paper. The key innovation related to this technique concerns the method to decompose modeless component from non-stationary process, characterized by a predetermined 'maximum intrinsic time window' and cubic spline. The introduction of conceptual modeless component eliminates the requirement of using spurious harmonics to represent nonlinear and non-stationary signals and then makes subsequent modal identification more accurate and meaningful. It neither slacks the vibration power of natural modes nor aggrandizes spurious energy of modeless component. The scale of the maximum intrinsic time window has been well designed, avoiding energy aliasing in data processing. Finally, it has been applied to analyze data series of vortex-induced vibration processes. Taking advantage of this newly introduced empirical decomposition method and mode identification technique, the vibration analysis about vortex-induced vibration becomes more meaningful.

Correlation Analyses of the Temperature Time Series Data from the Heat Box for Energy Modeling in the Automobile Drying Process (자동차 건조 공정 에너지 예측 모형을 위한 공조기 온도 시계열 데이터의 상관관계 분석)

  • Lee, Chang-Yong;Song, Gensoo;Kim, Jinho
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.37 no.2
    • /
    • pp.27-34
    • /
    • 2014
  • In this paper, we investigate the statistical correlation of the time series for temperature measured at the heat box in the automobile drying process. We show, in terms of the sample variance, that a significant non-linear correlation exists in the time series that consist of absolute temperature changes. To investigate further the non-linear correlation, we utilize the volatility, an important concept in the financial market, and induce volatility time series from absolute temperature changes. We analyze the time series of volatilities in terms of the de-trended fluctuation analysis (DFA), a method especially suitable for testing the long-range correlation of non-stationary data, from the correlation perspective. We uncover that the volatility exhibits a long-range correlation regardless of the window size. We also analyze the cross correlation between two (inlet and outlet) volatility time series to characterize any correlation between the two, and disclose the dependence of the correlation strength on the time lag. These results can contribute as important factors to the modeling of forecasting and management of the heat box's temperature.

Stochastic Simulation Model for non-stationary time series using Wavelet AutoRegressive Model

  • Moon, Young-Il;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1437-1440
    • /
    • 2007
  • Many hydroclimatic time series are marked by interannual and longer quasi-period features that are associated with narrow band oscillatory climate modes. A time series modeling approach that directly considers such structures is developed and presented. The essence of the approach is to first develop a wavelet decomposition of the time series that retains only the statistically significant wavelet components, and to then model each such component and the residual time series as univariate autoregressive processes. The efficacy of this approach is demonstrated through the simulation of observed and paleo reconstructions of climate indices related to ENSO and AMO, tree ring and rainfall time series. Long ensemble simulations that preserve the spectral attributes of the time series in each ensemble member can be generated. The usual low order statistics are preserved by the proposed model, and its long memory performance is superior to the direction application of an autoregressive model.

  • PDF

A Study on the Test and Visualization of Change in Trends associated with the Occurrence of Non-stationary of Long-term Time Series Data based on Unit Root Test (Unit Root Test를 기반으로 한 장기 시계열 데이터의 non-stationary 발생에 따른 추세 변화 검정 및 시각화 연구)

  • Yoo, Jaeseong;Choo, Jaegul
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.10a
    • /
    • pp.398-402
    • /
    • 2018
  • 비정상(non-stationary) 장기 시계열 안에서도, 단기적으로 추세의 변화가 일시적인 것인지, 아니면 구조적으로 변한 것인지를 적시에 판단하는 것은 중요하다. 이는 시계열 추세의 변화를 상시 감지하여, 변화에 맞는 적정한 수준의 대응을 할 필요가 있기 때문이다. 본 연구에서는 장기 시계열이 주어진 상황에서, 단위근 검정법을 기반으로 단기적으로 구조변화를 감지하여, 이러한 변화가 얼마나 지속될 것인지를 시각적으로 판단할 수 있는 방법을 제시하고자 한다.

APPLICATIONS OF THE HILBERT-HUANG TRANSFORM ON THE NON-STATIONARY ASTRONOMICAL TIME SERIES

  • HU, CHIN-PING;CHOU, YI;YANG, TING-CHANG;SU, YI-HAO;HSIEH, HUNG-EN;LIN, CHING-PING;CHUANG, PO-SHENG;LIAO, NAI-HUI
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.605-607
    • /
    • 2015
  • The development of time-frequency analysis techniques allow astronomers to successfully deal with the non-stationary time series that originate from unstable physical mechanisms. We applied a recently developed time-frequency analysis method, the Hilbert-Huang transform (HHT), to two non-stationary phenomena: the superorbital modulation in the high-mass X-ray binary SMC X-1 and the quasi-periodic oscillation (QPO) of the AGN RE J1034+396. From the analysis of SMC X-1, we obtained a Hilbert spectrum that shows more detailed information in both the time and frequency domains. Then, a phase-resolved analysis of both the spectra and the orbital profiles was presented. From the spectral analysis, we noticed that the iron line production is dominated by different regions of this binary system in different superorbital phases. Furthermore, a pre-eclipse dip lying at orbital phase ~0:6-0:85 was discovered during the superorbital transition state. We further applied the HHT to analyze the QPO of RE J1034+396. From the Hilbert spectrum and the O-C analysis results, we suggest that it is better to divide the evolution of the QPO into three epochs according to their different periodicities. The correlations between the QPO periods and corresponding fluxes were also different in these three epochs. The change in periodicity and the relationships could be interpreted as the change in oscillation mode based on the diskoseismology model.

Mean-VaR Portfolio: An Empirical Analysis of Price Forecasting of the Shanghai and Shenzhen Stock Markets

  • Liu, Ximei;Latif, Zahid;Xiong, Daoqi;Saddozai, Sehrish Khan;Wara, Kaif Ul
    • Journal of Information Processing Systems
    • /
    • v.15 no.5
    • /
    • pp.1201-1210
    • /
    • 2019
  • Stock price is characterized as being mutable, non-linear and stochastic. These key characteristics are known to have a direct influence on the stock markets globally. Given that the stock price data often contain both linear and non-linear patterns, no single model can be adequate in modelling and predicting time series data. The autoregressive integrated moving average (ARIMA) model cannot deal with non-linear relationships, however, it provides an accurate and effective way to process autocorrelation and non-stationary data in time series forecasting. On the other hand, the neural network provides an effective prediction of non-linear sequences. As a result, in this study, we used a hybrid ARIMA and neural network model to forecast the monthly closing price of the Shanghai composite index and Shenzhen component index.

Effects of incorrect detrending on the coherency between non-stationary time series processes

  • Lee, Jin
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.1
    • /
    • pp.27-34
    • /
    • 2019
  • We study the effect of detrending on the coherency between two time series processes. Many economic and financial time series variables include nonstationary components; however, we analyze the two most popular cases of stochastic and deterministic trends. We analyze the asymptotic behavior of coherency under incorrect detrending, which includes the cases of first-differencing the deterministic trend process and, conversely, the time trend removal of the unit root process. A simulation study is performed to investigate the finite sample performance of the sample coherency due to incorrect detrending. Our work is expected to draw attention to the possible distortion of coherency when the series are incorrectly detrended. Further, our results can extend to various specification of trends in aggregate time series variables.