정맥의 천자는 병리학적 검사를 위한 혈액 샘플을 획득하기 위해 널리 사용되고 있다. 바늘을 사용한 침습적인 정맥 천자 방법이 반복되서 시행되면 환자가 받는 고통이 증가되는 문제가 있어 본 연구팀은 사전에 소형 근적외선 (near-infrared, NIR) 영상 시스템을 개발하였다. 획득된 NIR 영상의 화질 개선을 위하여 본 연구에서는 노이즈 제거에 효율적으로 잘 알려진 비지역적 평균 (non-local means, NLM) 알고리즘을 모델링하여 시스템에서의 적용 가능성을 분석하고자 한다. 개발된 NIR 영상 시스템은 dichroic 및 long-pass filter를 적외선 (infrared, IR)이 통과하여 최종적으로 CMOS 센서 모듈로 검출되는 원리를 기반으로 구성하였다. 제안하는 NLM 알고리즘은 노이즈를 제거시키고자 하는 픽셀을 주변 픽셀들간의 거리들을 고려한 값으로 대체하는 원리를 기반으로 모델링하였다. 850 nm의 중심 파장을 가진 NIR 영상을 획득 후 NLM 알고리즘을 적용하여 히스토그램 평활화를 통해 최종 정맥 영역을 분할하였다. 결과적으로 NLM 알고리즘을 적용한 정맥의 NIR 영상의 coefficient of variation은 평균 0.247로 기존의 filtering 방법들과 비교하여 우수한 결과값으로 도출되었다. 또한 NLM 알고리즘의 dice similarity coefficient 값은 기존의 median filter와 total variation 방법에 비하여 각각 62.91 및 9.40% 향상된 값이 획득되었다. 결론적으로 NLM 알고리즘은 NIR 영상 시스템으로 획득한 정맥의 정확한 분할이 가능하게 할 수 있음을 증명하였다.
객체 기반 영상 분석은 영상의 복잡도를 낮추는 동시에 영상의 특성을 유지한다는 점에서 픽셀 기반 영상 분석보다 높은 효율성과 정보 활용 가능성을 지닌다. Superpixel은 일반적인 영상 분할보다 작은 영상 단위로 영상을 과분할함으로써 영상 내의 경계를 보다 잘 유지할 수 있다. 이 가운데 SLIC(Simple linear iterative clustering) superpixel 기법은 기존의 기법들보다 높은 품질의 영상 분할 결과를 제시하는 것으로 알려져 있다. 이러한 SLIC 기법의 입력 파라미터인 superpixel의 개수는 영상 분할 결과에 큰 영향을 미침에도 이에 대한 연구는 선행 연구에서 충분히 다루어지지 않았다. 이에 본 연구에서는 KOMPSAT 영상을 이용하여 변화 탐지 활용 연구를 위한 SLIC 계열 superpixel 기법의 최적 파라미터 분석 및 변화 탐지 성능 비교를 수행하였다. 사용된 superpixel 기법은 SLIC, SLIC0(SLIC의 무변수 버전), SNIC(Simple non-iterative clustering) 의 세 가지 기법으로, $5{\times}5$(픽셀)에서 $50{\times}50$(픽셀)의 superpixel 크기 범위에 대해서 superpixel 개수를 지정하여 superpixel 분할 영상을 생성하고 변화 탐지 참조 영상에 대한 재현율을 분석하였다. 이를 통해 얻어진 최적 superpixel 크기를 바탕으로 변화를 탐지하고자 하는 두 영상의 차 영상을 분할한 후 일정 크기의 객체로 clustering하였다. 두 시기(bi-temporal) 영상으로부터 얻어진 공통된 영상경계는 전후 영상에 각각 적용함으로써 각 superpixel의 feature(Lab 색상 차이) 변화를 탐지하였다. 최종적인 변화 탐지 결과는 참조 영상을 통해 그 성능이 분석하였으며, 영상의 과분할 정도가 높지 않더라도 규칙적인 크기와 형태의 superpixel을 통해 높은 변화 탐지 성능을 달성할 수 있음을 확인하였다.
본 연구는 초분광 영상을 이용한 변화탐지 기법의 전처리 과정 중 하나인 영상간 기하보정과 밴드선택에 초점을 맞추고 있다. 최근 그 성능이 입증된 SIFT(Scale-Invariant Feature Transform) 기법을 이용하여 자동화된 기하보정을 수행하였으며, 분광정보의 불변 특성을 반영하는 PIF(Pseudo-Invariant Feature)를 추출하여 영상의 잡음을 추정함으로써, 변화탐지를 위한 유효 밴드를 선택하였다. 또한, 기대최대화(Expectation-Maximization) 기법을 이용한 객관적인 밴드선택 방법을 구현하였다. 제안된 기법들을 실제 적용하기 위해 Hyperion 영상을 사용하였으며, 영상에 나타나는 보정되지 않은 밴드 및 Striping 잡음의 특성을 부가적으로 제거하였다. 결과를 통해, 변화탐지를 위한 최소한의 요구조건인 0.2화소 이내의 정확도(RMSE)를 만족하는 신뢰도 높은 기하보정을 수행할 수 있었으며, 시각적인 판단에 의존하던 밴드선택을 PIF를 통해 객관화할 수 있음을 확인하였다.
지문 인식은 보통 지문 영상의 획득과 획득된 지문 영상을 비교하는 단계로 구분해서 생각할 수 있다. 본 논문에서는 지문 영상을 획득하는 단계에서 지문 입력 센서를 사용하여 연구의 초점을 지문의 비교 방법에 맞추었다. 지문 입력 센서에서 는 지문 영상이 영상처리되어 출력되기 때문에 지문을 획득할 때 발생할 수 있는 잡음들에 대해서는 고려하지 않았고 사용자가 임의적으로 여러 번 지문을 입력하게 하여 회전과 이동이 복합적으로 존재하는 영상 왜곡을 고려하였다. 사용자의 지문 인식을 위한 방법으로 광학적 상관관계(Optical Correlation)를 출력하는 Non-linear Joint Transform Correlator(NRC)를 컴퓨터 상에서 구현하였고, 지문 입력 시에 발생할 수 있는 왜곡에 불변적인 특징을 갖도록 지문의 중심점을 찾는 알고리즘을 추가하여 지문 인식의 정확도를 보완하였다. 또한, 찾아진 지문 영상의 중심점을 가지고 100$\times$100픽셀 크기의 중심 영역만을 추출하여 지문 인식에 필요한 시간과 입력 영상의 정보를 줄이면서 높은 정확도를 갖는 매칭 기법을 제시하였다
기상과 시간의 제약을 받지 않고 영상을 획득할 수 있는 레이더 위성 영상은 오랫동안 홍수 탐지 분야에서 이용되어 왔다. 많은 연구들이 홍수를 효율적으로 탐지하기 위하여 다양한 기법들을 적용하였고 그 결과 홍수 지역의 탐지율은 비약적으로 상승하였다. 홍수는 침수피해를 유발하는 특성상 침수지와 비침수지의 경계 부분이 뚜렷하게 구분돼야하고 아주 세밀한 탐지가 가능해야한다. 이를 위해서는 레이더 자체의 해상도가 좋아야 할 뿐만 아니라 필터링 과정에서 해상도 저하를 최소화해야 한다. 레이더 위성의 해상도는 기술이 발전함에 따라 고해상도의 위성이 증가하고 있지만 필터링 기법을 달리하여 홍수 탐지의 정확도 및 효율성을 비교하여 홍수탐지에 적합한 필터링을 찾는 연구는 부족한 것이 현실이다. 본 연구에서는 Lee, Frost, NL-means(Non-Local means) 필터링을 위성레이더 영상에 적용하였고 필터링된 영상을 이용하여 홍수 지도를 생성한 뒤 각각의 결과를 비교하였다. Frost와 NL-means 필터는 Lee 필터에 비해 스펙클 노이즈를 저감하는데 효과적이었다. 하지만 Frost 필터의 경우에는 해상도의 저하가 심하다는 문제가 있었다. NL-means 필터는 다른 필터에 비해 shadow 현상을 효과적으로 제거하지 못하였고 이로 인해 잘못 탐지되는 픽셀이 존재한다는 문제가 있었다. 그럼에도 전체 영상의 픽셀 수에 비해 shadow 효과의 영향을 받아 오탐지되는 픽셀 수가 많지 않기 때문에 NL-means 필터를 이용한 경우가 가장 높은 홍수 탐지율을 보였다. 테스트 지역에서 필터링이 적용되지 않은 영상을 이용하여 홍수를 탐지한 경우 카파계수가 0.55로 나타났고 Lee, Frost, NL-means 필터를 적용한 경우 각각 0.64, 0.74, 0.81로 나타났다. 또한 NL-means 필터를 적용한 영상은 해상도의 변화가 거의 없는 상태에서 노이즈를 효과적으로 감소하였기 때문에 침수지와 비침수지의 경계를 가장 명확하게 구분할 수 있어 효과적으로 분석 결과를 도출하였다.
최근 사용 가능한 고해상도 위성 SAR 영상이 다양해지면서, 변화 탐지를 포함한 다양한 분야에서 SAR 영상에 대한 정밀 정합 요구가 높아지고 있다. 다중 관측각 환경에서의 고해상도 SAR 영상간 정합은 SAR 영상의 특성상 발생하는 스펙클 노이즈, 기하 왜곡 등에 의해 어려움이 있다. 본 연구에서는 독일 TerraSAR-X의 staring spotlight 모드로 촬영된 고해상도 SAR 영상을 활용하여, 개략정합 단계와 정밀정합 단계의 2단계에 걸친 영상정합 알고리즘을 제안하였다. 개략정합 단계에서는 적응형 샘플링 기법과 SAR-SIFT(Scale Invariant Feature Transform)를 결합하여 정합을 수행하였고, 정밀정합 단계에서는 3가지의 강성 정합 기법인 NCC(Normalized Cross Correlation), PC (Phase Congruency)-NCC, MI (Mutual Information) 기법과 비강성 정합 기법인 Gefolki (Geoscience extended Flow Optical Flow Lucas-Kanade Iterative)를 적용하여 정합 성능을 비교 분석하였다. 정합 결과는 RMSE (Root Mean Square Error)와 FSIM (Feature Similarity) 지수를 사용하여 정량적인 비교를 수행하였다. 사용한 모든 영상 조합에서 강성정합 기법은 Gefolki 알고리즘에 비해 저조한 정합 성능을 보였다. 강성정합 모델들은 지형기복이 큰 지역에서 정합오차가 크게 발생함을 확인할 수 있었다. Gefolki 알고리즘 적용 결과, RMSE 1~3화소를 보이며 가장 우수한 결과를 확인하였으며, FSIM 지수 또한 다른 기법에 비해 0.02~0.03 이상 높은 값을 취득했다. 다중 관측각 영상에서의 고해상도 SAR 영상 간 정합 성능을 비교하였으며, 강성정합 기법에 비해 Gefolki 알고리즘을 통해 지형효과를 충분히 줄일 수 있음을 확인했다. 이는 추후 변화탐지를 포함한 다양한 분야의 전 처리 과정에 효과적으로 사용될 수 있을 것으로 기대된다.
본 논문에서는 수계 영역의 감독 분류 성능을 향상시키기 위하여 블록 기반의 영상 분할과 수계 경계의 확장을 이용하는 수계 검출 방법을 제안한다. 초기 수계 영역을 추출하기 위하여 수계 훈련 지역의 Normalized Difference Water Index (NDWI) 및 Near Infrared (NIR) 밴드 영상의 분광 정보를 이용하여 Mahalanobis 거리 영상을 생성한다. Mahalanobis 거리 영상에 포함된 잡음 성분의 영향을 감소시키기 위해서 인접한 화소의 연결 강도에 의해 확산 계수가 제어되는 평균 곡률 확산을 적용한 후에 초기 수계 영역을 추출한다. 추출된 수계 영상을 같은 크기의 블록으로 분할한 후에 수계 경계에 속하는 수계 영역의 정보를 이용하여 수계 영역을 갱신한다. 수계 경계에 속하는 수계 영역과 수계 훈련 지역 사이의 통계적인 거리가 임계값 이하이면, 수계 영역 갱신을 반복적으로 수행한다. 제안한 알고리즘을 KOMPSAT-2 영상에 적용한 결과 블록 크기가 $11{\times}11$에서 $19{\times}19$사이인 경우에 overall accuracy는 99.47%에서 99.53%, Kappa coefficient는 95.07%에서 95.80%의 분류 정확도를 보였다.
지표변수는 지면 근처의 기후변화에 중요한 역할을 하기 때문에, 충분히 높은 정확성을 가진 값이 산출되어야 한다 하지만 지표 반사도는 강한 이방성(non-Lambertian) 특징을 가지고 있기 때문에, 위성 천저각으로부터 멀어질수록 태양-지점-위성과의 기하학적 영향을 더욱 강하게 받는 효과를 가져온다. 또한 지표 각 영향을 포함하고 있는 지표 반사도는 노이즈를 가지게 된다. 따라서 본 연구의 목적은 한반도 지역의 MODIS 반사도 자료(250m)를 이용하여 각 영향이 제거된 보다 정확한 반사도 값에 대한 데이터베이스를 제공하는 것이다. 본 연구에서는 매일 2회씩 제공하는 MODIS(Moderate Resolution Imaging Spoctroradiometer) 센서의 가시영역과 근적외영역의 반사도(250m)자료를 이용하였다. 먼저 구름화소를 제거하기 위해서 연속적인 물리과정을 통하여 각각의 구름 화소를 제거하였다. 그리고 지리보정은 MODIS 센서에서 제공하는 지리정보자료를 이용하여 2차 다항회귀식을 통한 최근접 내삽법을 사용하였다. 본 연구에서는 지표 이방성 효과를 보정하기 위해서 반 경험적 양방향성분포함수(BRDF) 모델을 사용하였다. 이 알고리즘은 위성으로부터 관측된 위성천정각, 태양천정각, 위성방위각, 태양방위각과 같은 각 성분을 이용하여 Kernel-deriven 모델의 역변환을 통하여 지표 반사도를 재생산한다. 먼저 우리는 BRDF 모델을 수행하기 위해 총 31일 모델 관측 실행기간을 고려하였다. 다음 단계로 각각의 화소 및 밴드에 대해서 BRDF 모델을 통하여 분리된 각 성분들을 변조함으로써 위성 직하점 반사도 정규화가 수행되었다. 모델을 이용하여 산출된 반사도 값은 실제 위성 반사도 값과 잘 일치하였고, RMSE(Root Mean Square Error)값은 전체적으로 약 0.01(최고값=0.03)이였다. 마지막으로, 우리는 한반도 지역에 대해서 2001년 동안 총 36개로 구성된 정규화 지표반사도 값의 데이터베이스를 구축하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.