• Title/Summary/Keyword: Non-Newtonian Solution

Search Result 64, Processing Time 0.025 seconds

Rheological Properties of Exopolysaccharide Produced by Xanthomonas sp. EPS-1 (Xanthomonas sp. EPS-1이 생산하는 다당류의 리올로지 특성)

  • Son, Bong-Soo;Park, Seok-Kyu;Kang, Shin-Kwon;Lee, Sang-Won;Sung, Nack-Kie
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.3
    • /
    • pp.269-274
    • /
    • 1995
  • For the screening of a new functional exopolysaccharide, sugar composition and rheological properties of exopolysaccharide produced from Xanthomonas sp. EPS-1 were investigated. The average molecular weight of exopolysaccharide was determined to be approximately 2.l $\times$ 10$^{6}$ dalton. The new exopolysaccharide EPS-1 was composed of mannose, glucose, galactose and gluco- samine. IR analysis showed that the exopolysaccharide EPS-1 was assumed to be polymer with carbohydrates. NMR analysis showed that exopolysaccharide EPS-1 was presumed to be 4 units of sugar and trace of CH$_{3}$ group. Exopolysaccharide EPS-1 solution showed a characteristic of non-Newtonian fluid properties. At the concentration of 1.0%, the consistency index and the flow behavior index were shown at 10.8352 poise-sec and 0.4419, respectively. All dispersions were pseudoplastic fluids described accurately by Power-law model. Exopolysaccharide EPS-1 was highly viscous at low concentration, with good stability over a wide range of pH 5 to 13. The excellent compatibility of exopolysaccharide EPS-1 was represented with salts such as sodium chloride.

  • PDF

Discharge and loss coefficients for viscoelastic fluids in differential pressure flow meters (차압식 유량계에서 점탄성유체의 유출 및 손실계수)

  • Jeon, U-Cheong;Jo, Byeong-Su;Baek, Byeong-Jun;Park, Bok-Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.4
    • /
    • pp.1501-1509
    • /
    • 1996
  • Differential pressure devices such as an orifice and Venturi are widely used in the measurement of flow rate of fluid mainly due to cost effectiveness and easy installation. In the current study, the viscoelastic effect on discharge and loss coefficients of those flow meters were investigated experimentally. Aqueous solutions of Polyacrylamide (200, 500, and 800 ppm) as viscoelastic fluids were used. Discharge coefficient of an orifice for viscoelastic fluids increased significantly up to approximately 15-20% when compared with that for water, while loss coefficient decreased up to 10-25% depending on the diameter ratio, .betha.. Also, pressure recovery for viscoelastic fluids was extended much longer than that for water. On the other hand, discharge and loss coefficients of Venturi for viscoelastic fluids were found to be strongly dependent on the Reynolds number. In both flow meters, the concentration effect for discharge and loss coefficients was not observed at more over than 200 ppm of aqueous solution. Conclusively, orifice and Venturi flow meters should be calibrated very carefully in the flow rate measurement for viscoelastic fluids.

Rheological Properties of Biopolymer Produced by Bacillus coagulans CE-74 (Bacillus coagulans CE-74가 생산하는 Biopolymer의 물성)

  • Lee, Seon-Ho;Son, Gyu-Mok;Choi, Cheong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.29 no.2
    • /
    • pp.198-203
    • /
    • 2000
  • A highly viscous biopolymer from Bacillus coagulans CE-74 was purified and its rheological properties were studied The rheological properties of biopolymers produced by Bacillus coagulans CE-74 were studied at the temperature ranges with 20~8$0^{\circ}C$, at the concentration of 0.5~4.0%, at the pH ranges from 3 to 1 and at the shear rate fo 7.34~73.38 sec-1. The apparent viscosity of biopolymer was decreased with increasing shear rate, and thereby biopolymer showed pseudoplastic characteristics. Biopolymer solution showed a characteristic of non-Newtonian fluid properties. At the concentration of 1%, the consistency index and the flow behavior index were shown at 2.64 poise. sec11 and 0.8571, respectively. All dispersions were pseudoplastic fluids described accurately by Herschel-Bulkley model. The change of the biopolymer viscosity on pH showed the highest value at the pH 7.0 and it showed lower at acidic conditon that at alkaline condition comparatively.

  • PDF

A Study on the Multiphase Flow Characteristics in an Mud System (머드시스템의 다상 유동 특성 연구)

  • Lee, Wang-Do;Han, Sang-Mok;Chun, Joong-Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_2
    • /
    • pp.737-744
    • /
    • 2021
  • An investigation is conducted to study a solid-liquid mixture vertically upward hydraulic transport of solid particles by non-Newtonian fluids in the Mud system. Rheology of particulate suspensions in viscoelastic fluids is of importance in many applications such as particle removal from surfaces, transport of proppants in fractured reservoir and cleaning of drilling holes, etc. In this study a clear acrylic pipe was used in order to observe the movement of solid particles. Annular velocities varied from 0.4 m/s to 1.2 m/s. The mud systems which were utilized included aqueous solution of sodium carboxymethyl cellulose (CMC) solutions. Main parameters considered in the study were inner-pipe rotary speed, fluid flow regime and particle injection rate. Solid volumetric concentration and pressure drops were measured for the various parameters such as inclination angle, flow rate, and rotational speed of inner cylinder.

Properties of Biopolymer YU-122 from Metarrhizium anisopliae (Metschn.) Sorok (Metarrhizium anisopliae (Metschn.) Sorok이 생산하는 Biopolymer YU-122의 물리, 화학적 특성)

  • Choi, Yong-Suk;Ohk, Seung-Ho;Yu, Ju-Hyun;Bai, Dong-Hoon
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.138-144
    • /
    • 1997
  • A new biopolymer YU-122 from Metarrhizium anisopliae (Metschn.) Sorok consisting of glucose and galactose was tested for its physical properties and flow behavior characteristics. Xanthan gum showed slightly higher viscosity than biopolymer YU-122. Viscosity of biopolymer YU-122 at various pHs and temperatures was also tested. The viscosity of biopolymer YU-122 was very stable up to pH 11 and $60^{\circ}C$, indicating that it has a great possibility for the application such as food additives, emulsifier, and drug release agents. Flow behavior index (n) from Power Law equation is 0.173. Biopolymer YU-122 solution was a pseudoplastic non-Newtonian fluid, which indicated that it had one or more side chains. When biopolymer YU-122 was used as a emulsifier, it stabilized the emulsion up to 120 hours, which was much better than xanthan gum. The biopolymer YU-122 could form an excellent but less clear film compared with xanthan and pullulan.

  • PDF

Rheological Properties of the Solutions of Incompatible Polymer Blends

  • Sohn, Jeong-In;Ree, Taik-Yue
    • Bulletin of the Korean Chemical Society
    • /
    • v.2 no.4
    • /
    • pp.142-147
    • /
    • 1981
  • A blend polymeric system composed of poly(methyl methacrylate) (PMMA or PM) and polystyrene (PS) dissolved in chloroform was rheologically studied. The viscosities ${\eta}_{bl}$ of the blend system with various blending ratios ${\chi}$ changing from zero (pure PS solution) to unity (pure PMMA solution) were measured at $25{\circ}C$ as a function of shear rates ${\dot{s}}$ by using a Couette type viscometer. ${\eta}_{bl}$ at a given ${\dot{s}}$ decreased exponentially with ${\chi}$ reaching asymptotic constant value of ${\eta}_{bl}$ ; ${\eta}_{bl}$ at a given ${\chi}$ is greater at a smaller ${\dot{s}}$. These results are explained by using Ree-Erying's theory of viscosity, ${\eta}_{bl}=(x_1{\beta}_1/{\alpha}_1)_{b}_1+ (x_2{\beta}_2/{\alpha}_2)_{bl}[sinh^{-1}{\beta}_2(bl) {\dot{s}}]/{\beta}_2(bl){\dot{s}}$. The Gibbs activation energy ${\Delta}G_i^\neq$(i = 2 for non-Newtonian units) entering into the intrinsic relaxation time ${\beta}$ is represented by a linear combination ${\Delta}G_i^\neq(bl) ={\chi}{\Delta}G_i^{\neq}_{iPM}+(1-{\chi}){\Delta}G_i^{\neq}_{iPS}$;the intrinsic shear modulus$[[\alpha}_i]^{-1}$ is also represented by $[{\alpha}_i(bl)]^{-1}={\chi}[{\alpha}_{iPM}]^{-1}+(1-{\chi})[{\alpha}_{iPS}]^{-1}$ and the fraction of area on a shear surface occupied by the ith flow units $x_i(bl)$ is similarly represented, i.e., $x_i(bl) = {\chi}x_{iPM}+(1-{\chi})x_{iPS}$. By using these ideas the Ree-Eyring equation was rewritten which explained the experimental results satisfactorily.

New Extracellular Biopolymer Produced by Methylobacterium organophilum from Methanol (Methylobacterium organophilum에 의한 메탄올로부터 생성되는 새로운 생물고분자)

  • Choi, Joon H.;Lee, Un T.;Kim, Jung H.;Rhee, Joon S.
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.4
    • /
    • pp.397-402
    • /
    • 1989
  • A new extracellular biopolymer was produced by Methylobacterium organophilum from methanol as a sole carbon and energy source. The purified biopolymer was found to have a high molecular weight of about 4-5$\times$10$^6$ dalton and contained 66% (w/w) of carbohydrate but no polyhydro xybutyrate. Other organic constituents were consisted of protein, pyruvic acid, uronic acid, and acetic acid, whereas content of inorganic ash was 22%. Based on the chemical analysis of the biopolymer by TLC method, the polymer was consisted of glucose, galactose, and mannose with an approximate molar ratio of 2:3:2. The biopolymer solution showed a characteristics of pseudoplastic non-Newtonian fluid. The viscosity of the 1%-biopolymer solution was found to be 18,000 cp at a shear rate, 1 sec$^{-1}$, which was almost 10 times higher than that of a commercial xanthan gum.

  • PDF

Flocculation of Red Tide Organisms in Sea Water by Using an Ignited Oyster Shell Powder and Loess Combination (소성굴패각분말과 황토의 동시 사용에 의한 적조생물의 응집)

  • KIM Sung-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.6
    • /
    • pp.716-722
    • /
    • 2003
  • This study determined the optimum dosage for coagulation reactions of red tide organisms (RTO) using a combination of ignited oyster shell powder (10sp) and loess and examined the electrokinetic and rheological characteristics of their flocs. Two kinds of RTO, Cylindrotheca closterium and Skeletonema costatum, were sampled in Masan Bay and cultured in the laboratory. Coagulation experiments were conducted using various concentrations of IOSP, loess, IOSP+1oess, RTO, and a jar tester RTO cell numbers were counted for both the supernatant and RTO culture solution. The removal rates increased rapidly with increasing IOSP concentrations up to 50 mg/L and loess concentrations up to 800 mg/L. A removal rate of $100\%$ was reached at 400 mg/L of IOSP and 6,400 mg/L of loess. The highest increment $(16.7\%)$ of the rates of coagulation reaction occurred using both IOSP and loess (50+200 mg/L) in comparison with IOSP alone. The rate of coagulation reaction using both IOSP and loess (50+200 mg/L), $90.6\%,$ was similar to employing either IOSP of 150 mg/L or loess of 3,200 mg/L. All of the coagulation liquids for RTO, IOSP (200 mg/L), loess (200 ma/L), and IOSP+1oess (200+200 mg/L) revealed non-Newtonian fluid properties and therefore their shear rate vs. shear stress curves were non-linear. The coagulation liquids revealed elastic body properties at a lower shear rate increasing in the following order: RTO, IOSP (200 mg/L), loess (200 mg/L), and IOSP+1oess (200+200 mg/L. IOSP+1oess (200+200 mg/L) especially demonstrated plastic flow properties at a lower shear rate.

Damped Oscill ations of the (Hard)Contact Lenses Posterior to the Blink (순목 후 콘택트(하드)렌즈의 감쇄 진동)

  • Kim, Dae-Soo
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.10 no.3
    • /
    • pp.173-184
    • /
    • 2005
  • A capillary action-induced tension develops in the tear layer between the contact lens and cornea, which leads to the restoring force due to difference in the layer thickness between either upper and lower or left and right side of the lens when it is displaced off the equilibrium position as a result of blinking. Suppose the lens was displaced a certain distance from the equilibrium position, lens starts to oscillate toward the equilibrium position with the decreasing amplitude due to the restoring force as well as the velocity dependent viscous damping force in the tear layer. A mathematical model which consists of the differential equations and their numerical solution was proposed to analyze the damped oscillations of lenses. The model predicts the time dependence of lenses after the blink varying the various parameters such as Be, diameters, masses and positions displaced from equilibrium. As the Be and mass of lens increases the rate of amplitude reduction decreases, which requires a more time for the lens to return to the equilibrium position. It seems that varying the lens' displacement and diameters affect the lens' motion very little.

  • PDF

Production and Rheological Properties of Bioflocculant Produced by Bacillus sp. DP-152

  • SUH, HYUN-HYO;SEONG-HOON MOON;HEE-SIK KIM;HYOUNG-KAB KIM;GEE-ILL JUN;HYUN-GEOUN PARK;DAE-OOK KANG;HEE-MOCK OH;BYUNG-DAE YOON
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.6
    • /
    • pp.618-624
    • /
    • 1998
  • The culture conditions for Bacillus sp. DP-152 in the flask were investigated for the production of polysaccharide locculant, DP-152. The optimum pH and temperature for the locculant production were 8.0 and $30^{\circ}C$, respectively. The avorable substrates for flocculant production were soluble tarch and ammonium nitrate. The medium composition was optimized as follows: 30 g soluble starch, 0.75 g $NH_4NO_3,\; 2.0g\; K_2\;HPO_4,\; 0.1\; g KH_2PO_4,\; 0.2g\; MgSO_4.\; 7H_2O,\; and\; 0.2g\; MnSO_4~5H_2O$ in 11 of distilled water. Under this optimized condition, flocculating activity has been improved 4-fold compared with that of the basal medium. In the culture flask, the highest flocculating activity was obtained after 70 h of cultivation and the amount of bioflocculant DP-152 yielded was 12.4 g/$\ell$. The solution of bioflocculant DP-152 showed non-Newtonian characteristics. Bioflocculant DP-152 exhibited apparently higher viscosity at all concentrations compared to that of zooglan (from Zoogloea ramigera), and it was stable over a wide range of temperatures and pHs.

  • PDF