• 제목/요약/키워드: Non-Local Means 필터

검색결과 10건 처리시간 0.024초

SAR 영상에서 웨이블렛 기반 Non-Local Means 필터를 이용한 스펙클 잡음 제거 (Wavelet Based Non-Local Means Filtering for Speckle Noise Reduction of SAR Images)

  • 이대근;박민재;김정욱;김도윤;김동욱;임동훈
    • 응용통계연구
    • /
    • 제23권3호
    • /
    • pp.595-607
    • /
    • 2010
  • 본 논문에서는 일반 영상의 가우시안 잡음 제거에 유용한 Non-Local Means 필터를 이용하여 웨이블렛 도메인 상에서 SAR 영상의 스펙클 잡음제거 방법을 제안하고자 한다. 먼저 승법 잡음인 스펙클 잡음을 로그를 취해 가법 잡음으로 변환한 후 웨이블렛 분해하고 고주파 혹은 저주파 서브밴드에 따라 Non-Local Means 필터와 웨이블렛 임계값 처리(wavelet thresholding)를 선택적으로 적용하고 지수형태를 취해 원영상으로 복원함으로서 잡음을 제거한다. 또한, Non-Local Means 필터의 단점인 수행시간을 단축시키기 위해 통계적 t-검정을 이용하여 개선하고자 한다. 영상실험을 통한 성능평가 결과 제안된 필터는 정성적인 비교와 PSNR과 DSSIM을 통한 정량적인 비교 모두 기존의 필터보다 우수한 성능을 보였다. 통계적 t-검정을 이용해 개선된 방법은 빠른 계산 속도와 더 나은 성능을 나타냈다.

객체 추출과 Non-Local 필터를 이용한 2D 영상의 3D 변환 (Conversion of 2D to 3D image using Object extraction and Non-local filter)

  • 강근호;이왕로;유지상
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2010년도 추계학술대회
    • /
    • pp.184-187
    • /
    • 2010
  • 본 논문에서는 움직임 추정(Motion Estimation, ME), 색상 라벨링(Labeling) 그리고 Non-Local means 필터 등을 이용하여 2D 영상을 3D 입체 영상으로 변환하는 기법을 제안한다. 제안하는 기법에서는 프레임 간의 움직임 추정 방법을 사용하여 물체의 움직임 벡터를 추출하며 색상 라벨링 작업을 통해 세밀한 객체를 추출한다. 객체를 추출한 후 영상을 이동시켜서 우영상을 생성한다. 우 영상을 생성하는 과정에서 채워지지 않은 화소들이 발생하는데 전체 화소의 상관도를 고려하는 Non-local means 필터를 사용하여 이 부분을 처리한다. 생성된 우 영상과 원본 영상인 좌 영상으로 비월주사(interlace)하여 최종 3D 입체 영상을 생성한다.

  • PDF

동영상을 위한 움직임 보상 기반 Non-Local Means 필터를 이용한 우적 검출 및 제거 알고리즘 (Rain Detection and Removal Algorithm using Motion-Compensated Non-local Means Filter for Video Sequences)

  • 서승지;송병철
    • 방송공학회논문지
    • /
    • 제20권1호
    • /
    • pp.153-163
    • /
    • 2015
  • 본 논문에서는 카메라 움직임에 강인한 동영상 내 비 검출 및 제거 기법을 제안한다. 검출 파트는 비의 밝기 특성과 공간적 특성을 활용하여 초기 비 영역을 검출한다. 그런 다음 가우시안 분포 모델을 적용하여 최종적인 비 영역을 결정한다. 제거 단계에서는 인접한 영상 간 상관성을 이용하여 비 영역을 중심으로 인접 프레임 간 블록 정합 기법을 수행한다. 그 후 정합 결과에 기반한 non-local mean (NLM) 필터링을 통해 비 영역을 보상한다. 마지막으로 깜박임 효과를 제거하고 가시성을 향상시키기 위해 후처리를 수행한다. 실험 결과를 통해 제안 기법의 화질이 기존 기법에 비해 동영상의 비 제거 성능에 있어 현저하게 우수함을 볼 수 있다.

비 지역적 평균과 유도 영상 필터링에 기반한 자기 공명 영상의 잡음 제거 (Noise Removal in Magnetic Resonance Images based on Non-Local Means and Guided Image Filtering)

  • 무하마드 타릭 마흐무드;최영규
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제20권11호
    • /
    • pp.573-578
    • /
    • 2014
  • 자기 공명 영상에서 흔히 발생하는 잡음을 없애기 위해 비 지역적 평균과 유도 영상 필터링을 이용하는 새로운 방법을 제안한다. 제안된 방법은 두 가지 단계로 구성되어 있다. 첫 단계에서는 비 지역적 평균 필터를 이용하여 잡음 영상으로부터 유도 영상 구하는데, 필터의 커널을 적응적으로 제어하기 위해 경계도(edgeness) 개념을 사용하였다. 두 번째 단계에서는 유도 영상 필터링으로 잡음을 제거하는 과정으로 원래의 잡음 영상과 앞 단계에서 구한 유도 영상을 이용하여 잡음이 제거된 영상을 복원한다. 제안된 방법의 우수성을 확인하기 위해 다양한 표준 자기 공명 영상 데이터를 이용하여 실험을 하였는데, 실험 결과 제안된 방법이 기존의 방법들에 비해 우수한 성능을 나타내는 것을 확인할 수 있었다.

인체모사 팬텀 기반 Fast non local means 노이즈 제거 알고리즘의 필터링 인자 변화에 따른 영상 최적화: 시뮬레이션 연구 (Image Optimization of Fast Non Local Means Noise Reduction Algorithm using Various Filtering Factors with Human Anthropomorphic Phantom : A Simulation Study)

  • 최동혁;김진홍;최종호;강성현;이영진
    • 한국방사선학회논문지
    • /
    • 제13권3호
    • /
    • pp.453-458
    • /
    • 2019
  • 본 연구에서는 Geant4 application for tomographic emission (GATE) 시뮬레이션 프로그램을 통해 설계 된 male adult mesh (MASH) 팬텀의 영상을 획득한 후 다양한 필터링 인자가 설정된 FNLM 노이즈 제거 알고리즘을 적용함으로써 그에 따른 영상 특성의 경향성을 알아보고자 한다. 이를 위해 GATE 시뮬레이션 프로그램을 통해 인체를 모사할 수 있는 MASH 팬텀을 설계하였다. 또한, 설계된 MASH 팬텀을 기반으로 MATLAB 프로그램을 통해 복부영상을 획득한 후 0.005의 $\sigma$ 값을 갖는 Gaussian noise를 추가하여 열화영상을 모델링하였다. 모델링 된 열화영상으로부터 제안하는 FNLM 노이즈 제거 알고리즘의 필터링 인자를 각각 0.005, 0.01, 0.05, 0.1, 0.5, 1.0 으로 설정하여 적용하였으며, 정량적 평가를 위해 FNLM 노이즈 제거 알고리즘이 적용된 영상들로부터 각각의 coefficient of variation (COV), signal to noise ratio (SNR) 그리고 contrast to noise ratio (CNR)을 측정하였다. 결과적으로, 0.05의 필터링 인자가 적용된 영상에서 가장 개선된 COV, SNR 그리고 CNR 값을 보였다. 특히, COV는 설정된 필터링 인자가 증가함에 따라 감소하였으며, 0.05 값 이후부터 거의 일정한 값을 나타내었다. 또한, SNR 및 CNR의 경우 필터링 인자가 증가함에 따라 증가하였으며, 0.05 값 이후부터 감소하는 경향을 보였다. 결론적으로, 열화 영상으로부터 FNLM 노이즈 제거 알고리즘 적용 시 적합한 필터링 인자를 설정해야 함이 증명되었다.

홍수매핑을 위한 레이더 영상 필터의 비교분석 (Comparative Analysis among Radar Image Filters for Flood Mapping)

  • 김대성;정형섭;백원경
    • 한국측량학회지
    • /
    • 제34권1호
    • /
    • pp.43-52
    • /
    • 2016
  • 기상과 시간의 제약을 받지 않고 영상을 획득할 수 있는 레이더 위성 영상은 오랫동안 홍수 탐지 분야에서 이용되어 왔다. 많은 연구들이 홍수를 효율적으로 탐지하기 위하여 다양한 기법들을 적용하였고 그 결과 홍수 지역의 탐지율은 비약적으로 상승하였다. 홍수는 침수피해를 유발하는 특성상 침수지와 비침수지의 경계 부분이 뚜렷하게 구분돼야하고 아주 세밀한 탐지가 가능해야한다. 이를 위해서는 레이더 자체의 해상도가 좋아야 할 뿐만 아니라 필터링 과정에서 해상도 저하를 최소화해야 한다. 레이더 위성의 해상도는 기술이 발전함에 따라 고해상도의 위성이 증가하고 있지만 필터링 기법을 달리하여 홍수 탐지의 정확도 및 효율성을 비교하여 홍수탐지에 적합한 필터링을 찾는 연구는 부족한 것이 현실이다. 본 연구에서는 Lee, Frost, NL-means(Non-Local means) 필터링을 위성레이더 영상에 적용하였고 필터링된 영상을 이용하여 홍수 지도를 생성한 뒤 각각의 결과를 비교하였다. Frost와 NL-means 필터는 Lee 필터에 비해 스펙클 노이즈를 저감하는데 효과적이었다. 하지만 Frost 필터의 경우에는 해상도의 저하가 심하다는 문제가 있었다. NL-means 필터는 다른 필터에 비해 shadow 현상을 효과적으로 제거하지 못하였고 이로 인해 잘못 탐지되는 픽셀이 존재한다는 문제가 있었다. 그럼에도 전체 영상의 픽셀 수에 비해 shadow 효과의 영향을 받아 오탐지되는 픽셀 수가 많지 않기 때문에 NL-means 필터를 이용한 경우가 가장 높은 홍수 탐지율을 보였다. 테스트 지역에서 필터링이 적용되지 않은 영상을 이용하여 홍수를 탐지한 경우 카파계수가 0.55로 나타났고 Lee, Frost, NL-means 필터를 적용한 경우 각각 0.64, 0.74, 0.81로 나타났다. 또한 NL-means 필터를 적용한 영상은 해상도의 변화가 거의 없는 상태에서 노이즈를 효과적으로 감소하였기 때문에 침수지와 비침수지의 경계를 가장 명확하게 구분할 수 있어 효과적으로 분석 결과를 도출하였다.

비지역적 평균 필터 기반의 개선된 커널 함수를 이용한 가우시안 잡음 제거 기법 (Gaussian Noise Reduction Technique using Improved Kernel Function based on Non-Local Means Filter)

  • 임월기;최현호;정제창
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2018년도 추계학술대회
    • /
    • pp.73-76
    • /
    • 2018
  • A Gaussian noise is caused by surrounding environment or channel interference when transmitting image. The noise reduces not only image quality degradation but also high-level image processing performance. The Non-Local Means (NLM) filter finds similarity in the neighboring sets of pixels to remove noise and assigns weights according to similarity. The weighted average is calculated based on the weight. The NLM filter method shows low noise cancellation performance and high complexity in the process of finding the similarity using weight allocation and neighbor set. In order to solve these problems, we propose an algorithm that shows an excellent noise reduction performance by using Summed Square Image (SSI) to reduce the complexity and applying the weighting function based on a cosine Gaussian kernel function. Experimental results demonstrate the effectiveness of the proposed algorithm.

  • PDF

저선량 X-ray 영상의 잡음 제거를 위한 확률 거리 기반 3차원 비지역적 평균 알고리즘 (3D Non-local Means(NLM) Algorithm Based on Stochastic Distance for Low-dose X-ray Fluoroscopy Denoising)

  • 이민석;강문기
    • 전자공학회논문지
    • /
    • 제54권4호
    • /
    • pp.61-67
    • /
    • 2017
  • 방사선 노출의 위험을 줄이기 위한 저선량 X-ray 영상은 양자노이즈로 인해 화질열화가 발생한다. 본 논문은 저선량 X-ray 기기를 통해 입력받은 저화질의 동영상으로부터 포아송 확률 거리(Stochastic distance)에 기반하여 동영상 X-ray 데이터의 노이즈를 3차원 Non-local Means(3D NLM) 필터를 통해 제거한다. 포아송 확률 거리는 X-ray 영상에서 3D NLM 노이즈 제거 필터의 유사성을 판별하는 척도로써 사용되어 진다. 제안하는 방법은 움직임 정보가 포함된 프레임 유사도를 사용하여 움직임 아티팩트가 최소화된 X-ray 동영상 데이터를 출력하도록 한다. 수행한 결과로 노이즈가 제거된 X-ray 영상을 생성하도록 함으로써, 영상의 열화된 화질을 개선시켜 저선량 X-ray 영상 데이터에 대한 판독 능력을 향상시킬 수 있는 효과가 있다. 제안하는 방법은 객관적인 기준의 수치적인 관점에서 뿐만 아니라, 실제의 X 선 영상 시퀀스의 주관적인 시각적 인식에서도 뛰어남을 확인 할 수 있다.

노이즈 수준 추정에 기반한 비지역적 영상 디노이징 방법 연구 (A study on non-local image denoising method based on noise estimation)

  • 임재성
    • 한국산학기술학회논문지
    • /
    • 제18권5호
    • /
    • pp.518-523
    • /
    • 2017
  • 본 논문은 비지역적(non-local)방법에 기반한 적응적 디노이징 방법을 제안한다. 비지역적 알고리즘은 부가적 백색 잡음(additive white Gaussian noise, AWGN)을 제거하는데 효과적이다. 노이즈 제거를 위해 비지역적 방법을 적용할 때 노이즈 수준에 따라 디노이징 파라미터가 조절될 필요가 있었다. 그러므로, 제안하는 방법은 입력 노이즈 수준에 따라 최적의 디노이징 파라미터를 제공하는 것이다. 제안하는 방법은 크게 두 가지 부분으로 나뉜다. 첫 번째로는 오프라인 과정과 온라인 과정이다. 오프라인 과정에서는 노이즈 수준과 디노이징 파라미터 간의 관계를 비지역적 기법을 이용하여 분석해본다. 다양한 디노이징 파라미터들이 비지역적 알고리즘에 적용되며 이에 대한 이미지이에 대한 이미지의 퀄리티를 분석하기 위해서 SSIM 지표가 사용된다. 주어진 노이즈 수준에서 최적 디노이징 파라미터를 가장 높은 SSIM일 때 선택한다. 온라인 과정에서는 노이즈 수준을 실 시간으로 추정하여 최적의 디노이징 파라미터를 적용하여 비지역적 필터링을 수행한다. 실험 결과에서 보는 바와 같이, 제안하는 방법은 정확하게 노이즈 수준을 추정했고, 이미지 디테일을 보존하면서 AWGN 노이즈를 제거했다. 이에 따른 실험 결과로 노이즈 추정 정확도는 90.0%, 복원된 이미지에서 높은 PSNR과 SSIM수치를 보였다.

블러와 조명 변화에 강인한 k-means 클러스터링 기반 고속 바코드 정보 추출 방법 (Robust k-means Clustering-based High-speed Barcode Decoding Method to Blur and Illumination Variation)

  • 김근준;조호상;강봉순
    • 한국정보통신학회논문지
    • /
    • 제20권1호
    • /
    • pp.58-64
    • /
    • 2016
  • 본 논문에서는 블러와 조명 변화에 강인한 바코드 디코딩 방법을 제안한다. 제안하는 디코딩 방법은 블러에 강인 디코딩과 빠른 연산속도를 위해 블러 영역과 비블러영역을 나누어 임계값을 연산하는 부분 지역 임계값 이진화 방법을 사용하였다. 또한 노이즈 데이터에 의한 인식 실패를 막기 위해서 동일한 엘리먼트 개수를 가지는 라인의 픽셀 너비를 모두 합한 면적 데이터를 이용하여 군집분류를 수행하는 k-means 알고리즘 기반의 디코더를 구현하였다. 다양한 악조건 환경에서 촬영된 샘플을 이용하여 실험 결과, 평균 98.47%로 높은 성공률을 보였으며 3개의 비교 프로그램 보다 성공률이 높았다.