• Title/Summary/Keyword: Non-Linear FEA

Search Result 46, Processing Time 0.019 seconds

Dynamic instability of functionally graded material plates subjected to aero-thermo-mechanical loads

  • Prakash, T.;Ganapathi, M.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.4
    • /
    • pp.435-450
    • /
    • 2005
  • Here, the dynamic instability characteristics of aero-thermo-mechanically stressed functionally graded plates are investigated using finite element procedure. Temperature field is assumed to be a uniform distribution over the plate surface and varied in thickness direction only. Material properties are assumed to be temperature dependent and graded in the thickness direction according to simple power law distribution. For the numerical illustrations, silicon nitride/stainless steel is considered as functionally graded material. The aerodynamic pressure is evaluated based on first-order high Mach number approximation to the linear potential flow theory. The boundaries of the instability region are obtained using the principle of Bolotin's method and are conveniently represented in the non-dimensional excitation frequency-load amplitude plane. The variation dynamic instability width is highlighted considering various parameters such as gradient index, temperature, aerodynamic and mechanical loads, thickness and aspect ratios, and boundary condition.

Numerical evaluating for the rigid and semi-rigid connection of I-Shaped beams to tubular columns

  • Shohreh Sohaei;Mehrzad TahamouliRoudsari;Parham Memarzadeh
    • Steel and Composite Structures
    • /
    • v.51 no.3
    • /
    • pp.305-323
    • /
    • 2024
  • Previous experimental studies have effectively demonstrated the remarkable efficiency of the stiffened channel link in connecting circular columns and I-shaped beams. This research aims to present design criteria and assess the seismic properties of this specific connection type through numerical modeling. Various parameters, including stiffener type and geometric properties of the stiffened channel element, were duly taken into account. The findings from over 136 nonlinear finite element analyses (FEAs) reveal that the recommended detailing scheme reliably satisfies all the regulations specified for rigid beam-to-column connections in special moment frames.

Effect of Racetrack Pit Depth and Bulk Stress on Far and Near-side Magnetic Flux Leakage at Ferromagnetic Pipeline (강자성 배관 외.내부 벽의 racetrack형 결함깊이와 부피응력이 누설자속에 미치는 영향)

  • Ryu, K.S.;Park, Y.T.;Son, D.;Atherton, D.L.;Clapham, L.
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.2
    • /
    • pp.70-75
    • /
    • 2003
  • Non-linear anisotropic materials were used to simulate the effects of bulk tensile stress in 3D finite element analysis (FEA). FEA was used to calculate the effects of near and far-side racetrack pit depth and simulated bulk tensile stress on magnetic flux leakage (MFL) signals. The axial and radial MFL signals were depended on near and far-side racetrack pit depth and on the bulk stress, but the circumferential MFL signal was not depended on them. The axial and radial MFL signals increased with greater pit depth and applied bulk stress, but the circumferential MFL signal was scarcely changed.

Experimental study and modelling of CFRP-confined damaged and undamaged square RC columns under cyclic loading

  • Su, Li;Li, Xiaoran;Wang, Yuanfeng
    • Steel and Composite Structures
    • /
    • v.21 no.2
    • /
    • pp.411-427
    • /
    • 2016
  • While the cyclic behaviour of fiber-reinforced polymer (FRP)-confined columns is studied rather extensively, the cyclic response especially the energy dissipation of FRP-confined damaged and undamaged square RC columns is not yet fully understood. In this paper, an experimental and numerical investigation was conducted to study the cyclic behavior of two different types of Carbon FRP (CFRP)-confined square RC columns: strengthened and repaired. The main variables investigated are initial damage, confinement of CFRP, longitudinal steel reinforcement ratio. The experimental results show that lower initial damage, added confinement with CFRP and longitudinal reinforcement enhance the ductility, energy dissipation capacity and strength of the columns, decrease the stiffness and strength degradation rates of all CFRP-confined square RC columns. Two hysteretic constitutive models were developed for confined damaged and undamaged concrete and cast into the non-linear beam-column fiber-based models in the software Open System for Earthquake Engineering Simulation (OpenSees) to analyze the cyclic behavior of CFRP-confined damaged and undamaged columns. The results of the numerical models are in good agreement with the experiments.

An optimum design of on-bottom stability of offshore pipelines on soft clay

  • Yu, Su Young;Choi, Han Suk;Lee, Seung Keon;Do, Chang Ho;Kim, Do Kyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.4
    • /
    • pp.598-613
    • /
    • 2013
  • This paper deals with the dynamic effect of pipeline installation and embedment for the on-bottom stability design of offshore pipelines on soft clay. On-bottom stability analysis of offshore pipelines on soft clay by DNV-RP-F109 (DNV, 2010) results in very unreasonable pipe embedment and concrete coating thickness. Thus, a new procedure of the on-bottom stability analysis was established considering dynamic effects of pipeline installation and pipe-soil interaction at touchdown point (TDP). This analysis procedure is composed of three steps: global pipeline installation analysis, local analysis at TDP, modified on-bottom stability analysis using DNV-RP-F109. Data obtained from the dynamic pipeline installation analysis were utilized for the finite element analysis (FEA) of the pipeline embedment using the non-linear soil property. From the analysis results of the proposed procedure, an optimum design of on-bottom stability of offshore pipeline on soft clay can be achieved. This procedure and result will be useful to assess the on-bottom stability analysis of offshore pipelines on soft clay. The analysis results were justified by an offshore field inspection.

Structural design optimization of racing motor boat based on nonlinear finite element analysis

  • Song, Ha-Cheol;Kim, Tae-Jun;Jang, Chang-Doo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.2 no.4
    • /
    • pp.217-222
    • /
    • 2010
  • Since 1980's, optimum design techniques for ship structural design have been developed to the preliminary design which aims at minimum weight or minimum cost design of mid-ship section based on analytic structural analysis. But the optimum structural design researches about the application for the detail design of local structure based on FEA have been still insufficient. This paper presents optimization technique for the detail design of a racing motor boat. To improve the performance and reduce the damage of a real existing racing boat, direct structural analyses; static and non-linear transient dynamic analyses, were carried out to check the constraints of minimum weight design. As a result, it is shown that the optimum structural design of a racing boat has to be focused on reducing impulse response from pitching motion than static response because the dynamic effect is more dominant. Optimum design algorithm based on nonlinear finite element analysis for a racing motor boat was developed and coded to ANSYS, and its applicability for actual structural design was verifed.

A Study on Design of Fillet Weld Size for Stiffener in the Hull Bottom of Crude Oil Tanker (Crude Oil Tanker 선저부 보강재 필렛 용접부 각장 설계에 관한 연구)

  • Kang, Bong-Gook;Shin, Sang-Beom;Park, Dong-Hwan
    • Journal of Welding and Joining
    • /
    • v.32 no.1
    • /
    • pp.79-86
    • /
    • 2014
  • The purpose of this study is to determine the proper fillet weld size for the stiffeners on hull bottom plate of crude oil tanker. To achieve it, the effective notch stress and hot spot stress of the fillet weld with leg length specified in the rule were evaluated by using comprehensive FE analyses. Based on the results, the fatigue damages at each location of weld were calculated. Meanwhile the transitional behavior of initial welding distortion in the hull bottom plate under the design conditions was investigated by using a non-linear FEA. Welding distortion and residual stress introduced during fabrication process were considered as initial imperfections. According to FE analysis results, if the fillet leg length satisfies the design criteria of the classification society, the concern on the root failure at the fillet welds in the bottom hull plate during the design life can be negligible. In addition, considering the transitional behavior of the distortion during the service life, the fillet leg length should be minimized.

A Novel Finite Element Technique for analyzing Saturated Rotating Machines Using the Domain Decomposition and TLM Method (영역분할법 (domain decomposition)과 TLM법을 이용한 회전기의 비선형 유한 요소 해석)

  • Joo, Hyun-Woo;Im, Chang-Hwan;Lee, Chang-Hwan;Kim, Hong-Kyu;Jung, Hyn-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.623-625
    • /
    • 2000
  • For the finite element analysis of highly saturated rotating machines involving rotation of a rotor such as dynamic analysis. cogging torque analysis and etc, so much time is needed because a new system matrix equation should be solved for each iteration and time step. It is proved in this paper that. in linear systems. the computational time can be greatly reduced by using the domain decomposition method (DDM). In nonlinear systems. however. this advantage vanishes because the stiffness matrix changes at each iteration especially when using the Newton-Raphson (NR) method. The transmission line modeling (TLM) method resolves this problem because in TLM method the stiffness matrix does not change throughout the entire analysis. In this paper, a new technique for FEA of rotating machines including rotation of rotor and non-linearity is proposed. This method is applied to a test problem. and compared with the conventional method.

  • PDF

Design of Permanent Magnet Type Wind Power Generators for Cogging Torque Reduction with Optimum Pole Arc Pitch Ratio (코깅토크 저감을 위한 최적 극호비를 갖는 영구자석형 풍력발전기의 설계)

  • Jang, Seok-Myeong;Kim, Jin-Soon;Ko, Kyoung-Jin;Choi, Jang-Young;Yoon, Gi-Gab
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.38-40
    • /
    • 2009
  • In order to achieve a gearless construction of the wind energy conversion system(WECS), a low-speed generator should be used. Of the various candidate machine types, radial-field, multi-pole, permanent magnet, synchronous machines may be used for low-speed applications. So, this paper deals with the design of direct-coupled, multi-pole radial field machines with permanent magnet(PM) excitation for wind power applications for cogging torque reduction through the determination of optimum pole arc/pitch ratio. On the basis of an equivalent magnetic circuit method(EMCM) and a space harmonic method(SHM), an initial design is performed considering restricted conditions. And then, a detailed design is made using a non-linear finite element analyses(FEA). Finally, test results concerning generating characteristics are given to confirm the validation of the design.

  • PDF

Numerical studies of the failure modes of ring-stiffened cylinders under hydrostatic pressure

  • Muttaqie, Teguh;Thang, Do Quang;Prabowo, Aditya Rio;Cho, Sang-Rai;Sohn, Jung Min
    • Structural Engineering and Mechanics
    • /
    • v.70 no.4
    • /
    • pp.431-443
    • /
    • 2019
  • The present paper illustrates a numerical investigation on the failure behaviour of ring-stiffened cylinder subjected to external hydrostatic pressure. The published test data of steel welded ring-stiffened cylinder are surveyed and collected. Eight test models are chosen for the verification of the modelling and FE analyses procedures. The imperfection as the consequences of the fabrication processes, such as initial geometric deformation and residual stresses due to welding and cold forming, which reduced the ultimate strength, are simulated. The results show that the collapse pressure and failure mode predicted by the nonlinear FE analyses agree acceptably with the experimental results. In addition, the failure mode parameter obtained from the characteristic pressure such as interframe buckling pressure known as local buckling pressure, overall buckling pressure, and yield pressure are also examined through the collected data and shows a good correlation. A parametric study is then conducted to confirm the failure progression as the basic parameters such as the shell radius, thickness, overall length of the compartment, and stiffener spacing are varied.