• Title/Summary/Keyword: Non-Invasive Air Technology

Search Result 3, Processing Time 0.018 seconds

A Study on the Effectiveness of Skin Care Solution System using Non-Invasive Air Technology

  • Park, Do-Young;Yoon, Dong-Gon;Seo, Jung-Gil
    • Journal of Platform Technology
    • /
    • v.10 no.3
    • /
    • pp.3-10
    • /
    • 2022
  • The effectiveness of an innovative skin treatment system that delivers an anti-aging solution deep into the skin without invasiveness and pain using a non-invasive air technology was investigated. In addition, an effective change using a non-invasive technique for delivering a solution for skin improvement was confirmed. The equipment named Cellre Jet is an effective skin care and drug delivery equipment that instantly opens the skin epidermis by using a maximum output pressure of 6 bars and high-pressure purified oxygen of 75-90% purity to deliver various nano-sized vital substances deep into the skin, and it uses the method of precisely controlling the equipment through an 8-inch digital touch display to accurately dispense the prescribed dosage. In this study, changes in skin condition were analyzed using this equipment and nano ampoules on subjects with actual skin problems through a related comparison and effectiveness judgment program. Through this study, skin care and drug delivery are possible, which will contribute to verifying the effectiveness of this non-invasive drug delivery equipment in the future, and is expected to establish the systematic effect in observing and studying changes in the skin.

Counterfeit Detection Using Characterization of Safety Feature on Banknote with Full-field Optical Coherence Tomography

  • Choi, Woo-June;Min, Gi-Hyeon;Lee, Byeong-Ha;Eom, Jong-Hyun;Kim, Ju-Wan
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.316-320
    • /
    • 2010
  • We report an application of full-field optical coherence tomography (FF-OCT) for identifying counterfeit bank notes. The depth-resolved imaging capability of FF-OCT was used for tomographic identification of superficially-identical objects. By retrieving the internal structures of the security feature (cash hologram) of an original banknote, we could demonstrate the feasibility of FF-OCT to identify counterfeit money. The FF-OCT images showed that the hologram consisted of micron scale multi-coated layers including an air gap. Therefore, it is expected that FF-OCT has potential as a new non-invasive tool to discern imitation of currency, and it would find applications in a wide field of counterfeit sciences.

An Experimental Study on Real Time CO Concentration Measurement of Combustion Gas in LPG/Air Flame Using TDLAS (TDLAS를 이용한 LPG/공기 화염 연소가스의 실시간 CO 농도 측정에 관한 연구)

  • So, Sunghyun;Park, Daegeun;Park, Jiyeon;Song, Aran;Jeong, Nakwon;Yoo, Miyeon;Hwang, Jungho;Lee, Changyeop
    • Clean Technology
    • /
    • v.25 no.4
    • /
    • pp.316-323
    • /
    • 2019
  • In order to enhance combustion efficiency and reduce atmosphere pollutants, it is essential to measure carbon monoxide (CO) concentration precisely in combustion exhaust. CO is the important gas species regarding pollutant emission and incomplete combustion because it can trade off with NOx and increase rapidly when incomplete combustion occurs. In the case of a steel annealing system, CO is generated intentionally to maintain the deoxidation atmosphere. However, it is difficult to measure the CO concentration in a combustion environment in real-time, because of unsteady combustion reactions and harsh environment. Tunable Diode Laser Absorption Spectroscopy (TDLAS), which is an optical measurement method, is highly attractive for measuring the concentration of certain gas species, temperature, velocity, and pressure in a combustion environment. TDLAS has several advantages such as sensitive, non-invasive, and fast response, and in-situ measurement capability. In this study, a combustion system is designed to control the equivalence ratio. Also, the combustion exhaust gases are produced in a Liquefied Petroleum Gas (LPG)/air flame. Measurement of CO concentration according to the change of equivalence ratio is confirmed through TDLAS method and compared with the simulation based on Voigt function. In order to measure the CO concentration without interference from other combustion products, a near-infrared laser at 4300.6 cm-1 was selected.