This paper considers a non-identical parallel machine scheduling problem with sequence and machine dependent setup times. The objective of this problem is to determine the allocation of jobs and the scheduling of each machine to minimize makespan. A mathematical model for optimal solution is derived. An in-depth analysis of the model shows that it is very complicated and difficult to obtain optimal solutions as the problem size becomes large. Therefore, two meta-heuristics, genetic algorithm (GA) and a new population-based evolutionary meta-heuristic called self-evolution algorithm (SEA), are proposed. The performances of the meta-heuristic algorithms are evaluated through compare with optimal solutions using randomly generated several examples.
This paper considers a parallel-machine scheduling problem with dedicated and common processing machines. Non-identical setup and processing times are assumed for each machine. A genetic algorithm is proposed to minimize the makespan objective measure. In this paper, a lowerbound and some heuristic algorithms are derived and tested through computational experiments.
Journal of Korean Institute of Industrial Engineers
/
v.40
no.3
/
pp.305-312
/
2014
This research deals with a problem that minimizes makespan in a non-identical parallel machine system with sequence and machine dependent setup times and machine dependent processing times. We first present a new mixed integer programming formulation for the problem, and using this formulation, one can easily find optimal solutions for small problems. However, since the problem is NP-hard and the size of a real problem is large, we propose four heuristic algorithms including genetic algorithm based heuristics to solve the practical big-size problems in a reasonable computational time. To assess the performance of the algorithms, we conduct a computational experiment, from which we found the heuristic algorithms show different performances as the problem characteristics are changed and the simple heuristics show better performances than genetic algorithm based heuristics for the case when the numbers of jobs and/or machines are large.
This paper describes a scheduling support system for a plant where the machine environment may be modeled as non-identical parallel machine lines (NPML). That is, there are a number of stages in series with various different-capability-machines at each stage. Arriving continuously are jobs with their specific due dates, processing times and candidate processing machines. We’ve developed a real-time scheduling module in conjunction with a supporting production information system which supplies necessary data to the module. This scheduling module is one of the 9 modules in this system, and is composed of both a scheduling interface and a production monitoring interface. This module allows users to generate many candidate schedules by selecting their business policies. The selective arguments which are available consist of allocation costs, batch sizes and machine selection intervals. They are now being implemented at a powder metallurgy plant.
Journal of Korean Society of Industrial and Systems Engineering
/
v.38
no.1
/
pp.65-73
/
2015
This paper considers a parallel-machine scheduling problem with dedicated and common processing machines using GA (Genetic Algorithm). Non-identical setup times, processing times and order lot size are assumed for each machine. The GA is proposed to minimize the total-tardiness objective measure. In this paper, heuristic algorithms including EDD (Earliest Due-Date), SPT (Shortest Processing Time) and LPT (Longest Processing Time) are compared with GA. The effectiveness and suitability of the GA are derived and tested through computational experiments.
Journal of Korean Society of Industrial and Systems Engineering
/
v.26
no.2
/
pp.35-41
/
2003
This paper proposes a heuristic scheduling algorithm to satisfy the customer's due date in the production process under make to order environment. The goal is to achieve the machine scheduling in the transformer winding process, in which consists of parallel machines with different machine performances. The winding is important production process in the transformer manufacturing company. The efficiency of the winding machines is different according to the voltage capacity and the winding type. This paper introduces a heuristic approach in the transformer winding process where the objective function is to minimize the total tardiness of jobs over due dates. The numerical experiment is illustrated to evaluate the performance.
Proceedings of the Korean Operations and Management Science Society Conference
/
2000.04a
/
pp.90-93
/
2000
This paper presents job scheduling for non-identical parallel machines using Simulated Annealing (SA). The scheduling problem accounts for allotting work parts of L lots into M parallel machines, where each lot is composed of N homogeneous jobs. Some lots may have different jobs while every job within each lot has common due date. Each machine has its own performance and set up time according to the features of the machine, and also by job types. A meta-heuristic, SA, is applied in this study to determine the job sequences of the scheduling problem so as to minimize total tardiness of due. The SA method is compared with a conventional steepest descent(SD) algorithm that is a typical tool for finding local optimum. The comparison shows the SA is much better than the SD in terms tardiness while SA takes longer , but acceptable time.
In this paper, we present a restricted tabu search(RTS) algorithm that schedules jobs on identical parallel machines in order to minimize the maximum lateness of jobs. Jobs have release times and due dates. Also, sequence-dependent setup times exist between jobs. The RTS algorithm consists of two main parts. The first part is the MATCS(Modified Apparent Tardiness Cost with Setups) rule that provides an efficient initial schedule for the RTS. The second part is a search heuristic that employs a restricted neighborhood generation scheme with the elimination of non-efficient job moves in finding the best neighborhood schedule. The search heuristic reduces the tabu search effort greatly while obtaining the final schedules of good quality. The experimental results show that the proposed algorithm gives better solutions quickly than the existing heuristic algorithms such as the RHP(Rolling Horizon Procedure) heuristic, the basic tabu search, and simulated annealing.
Journal of the Korean Operations Research and Management Science Society
/
v.25
no.2
/
pp.47-57
/
2000
In this paper we consider an n-job non-preemptive and identical parallel machine scheduling problem of minimizing the sum of earliness and tardiness with different release times and due dates. In the real world this problem is more realistic than the problems that release times equal to zero or due dates are common. The problem is proved to be NP-complete. Thus a heuristic is developed to solve this problem To illustrate its suitability a proposed heuristic is compared with a genetic algorithm for a large number of randomly generated test problems. Computational results show the effectiveness and efficiency of proposed heuristic. In summary the proposed heuristic provides good solutions than genetic algorithm when the problem size is large.
Purpose: This study deals with a production planning and scheduling problem to minimize the total weighted tardiness on hybrid flow shop with sets of non-identical parallel machines on stages, where parallel machines in the set are dedicated to perform specific subsets of jobs and sequence-dependent setup times are also considered. Methods: A two-stage approach, that applies MILP model in the 1st stage and dispatching rules in the 2nd stage, is proposed in this paper. The MILP model is used to assign jobs to a specific machine in order to equalize the workload of the machines at each stage, while new dispatching rules are proposed and applied to sequence jobs in the queue at each stage. Results: The proposed two-stage approach was implemented by using a commercial MILP solver and a commercial simulation software and a case study was developed based on the spark plug manufacturing process, which is an automotive component, and verified using the company's actual production history. The computational experiment shows that it can reduce the tardiness when used in conjunction with the dispatching rule. Conclusion: This proposed two-stage approach can be used for HFS systems with dedicated machines, which can be evaluated in terms of tardiness and makespan. The method is expected to be used for the aggregated production planning or shop floor-level production scheduling.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.