• 제목/요약/키워드: Non-Ground

검색결과 1,378건 처리시간 0.024초

Cross-hole Type 밀링용 비 연삭 인서트의 가공성능평가 (Cutting Performance Evaluation of Non-Ground Cross-hole Type Milling Insert)

  • 박휘근;김택수;이상민;이원석;최윤서;이종찬
    • 한국기계가공학회지
    • /
    • 제10권2호
    • /
    • pp.73-78
    • /
    • 2011
  • The existent cutting insert have occupied most product of grinding style, because it has a problem of accuracy and manufacturing process. The product has a concept but development is difficult, because grinding and manufacturing by press are impossible. But by development and stabilization of a technology, preference of non-ground insert increases gradually. And then insert that grinding is impossible is developed availably as non-ground product by using developed equipment and software. In this paper reports some experimental results on the machining performance of non-ground Cutting inserts. Three kinds of Cutting inserts were manufactured without using grinding process. Machining experiments were carried out to compare the machining performance of non-ground inserts with that of ground ones. The experimental results indicate that the cutting forces and tool wear and surface roughnesses of machined surface of both ground and non-ground inserts are comparable.

균일하지 않은 지면 보행을 위한 얀센 메커니즘 기반의 보행로봇 설계 (Design of Walking Robot Based on Jansen Mechanism for Non-uniform Ground Surface)

  • 정윤우
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제5회(2016년)
    • /
    • pp.481-484
    • /
    • 2016
  • Jansen mechanism is basic principal of walking robot. Because that mechanism have many link, walking robot can walk like animals. One of the feature is that space is existed between leg of walking robot and ground surface. So, it can walk through the non-uniform ground surface that have obstacle. In this paper, I will suggest design of walking robot that can walk on non-uniform ground surface effectively based on Jansen mechanism.

  • PDF

장주기 지진동을 고려한 건축물 및 비구조요소의 가속도 응답 증폭비 (A Study on the Acceleration Response Amplification Ratio of Buildings and Non-structural Components Considering Long-Period Ground Motions)

  • 오상훈;김주찬
    • 한국지진공학회논문집
    • /
    • 제27권1호
    • /
    • pp.1-12
    • /
    • 2023
  • Structures of high-rise buildings are less prone to earthquake damage. This is because the response acceleration of high-rise buildings appears to be small by generally occurring short-period ground motions. However, due to the increased construction volume of high-rise buildings and concerns about large earthquakes, long-period ground motions have begun to be recognized as a risk factor for high-rise buildings. Ground motion observed on each floor of the building is affected by the eigenmode of the building because the ground motion input to the building is amplified in the frequency range corresponding to the building's natural frequency. In addition, long-period components of ground motion are more easily transmitted to the floor or attached components of the building than short-period components. As such, high-rise buildings and non-structural components pose concerns about long-period ground motion. However, the criteria (ASCE 7-22) underestimate the acceleration response of buildings and non-structural components caused by long-period ground motion. Therefore, the characteristics of buildings' acceleration response amplification ratio and non-structural components were reviewed in this study through shake table tests considering long-period ground motions.

Oviposition preference of Luciola lateralis (Coleoptera: Lampyridae) according to the material and color of artificial oviposition ground

  • Won-Jun Seo;Do-Hwan Jang;Sang-Eun Park;Young-Nam Youn
    • 농업과학연구
    • /
    • 제50권3호
    • /
    • pp.507-512
    • /
    • 2023
  • The traditional oviposition ground for indoor breeding of Luciola lateralis is moss. This study was conducted to find the most suitable alternative oviposition ground that can maintain or increase the oviposition rate of L. lateralis while addressing the problems of larva collection time and larva loss that occur when moss is used. As alternative candidate oviposition ground comprising six colors of non-woven fabric and felt were used to measure the fecundity variation rate of L. lateralis with respect to the color and material of the oviposition ground. In addition, measure the fecundity variation rate of L. lateralis in moss, a traditional oviposition ground, was also measured and investigated for comparison. The investigation showed that the average number of eggs in the non-woven fabric group was higher than that in the felt group. The yellow non-woven fabric had an average number of eggs that was more than 100 times higher than of moss used as a traditional oviposition ground. In the space where the six color non-woven fabric were together, L. lateralis concentrated its oviposition on yellow. These results showed that yellow non-woven fabric can be sufficiently used for efficient indoor mass breeding of L. lateralis while addressing problems caused by moss, a traditional oviposition ground.

Effect of non-stationary spatially varying ground motions on the seismic responses of multi-support structures

  • Xu, Zhaoheng;Huang, Tian-Li;Bi, Kaiming
    • Structural Engineering and Mechanics
    • /
    • 제82권3호
    • /
    • pp.325-341
    • /
    • 2022
  • Previous major earthquakes indicated that the earthquake induced ground motions are typical non-stationary processes, which are non-stationary in both amplification and frequency. For the convenience of aseismic design and analysis, it usually assumes that the ground motions at structural supports are stationary processes. The development of time-frequency analysis technique makes it possible to evaluate the non-stationary responses of engineering structures subjected to non-stationary inputs, which is more general and realistic than the analysis method commonly used in engineering. In this paper, the wavelet-based stochastic vibration analysis methodology is adopted to calculate the non-stationary responses of multi-support structures. For comparison, the stationary response based on the standard random vibration method is also investigated. A frame structure and a two-span bridge are analyzed. The effects of non-stationary spatial ground motion and local site conditions are considered, and the influence of structural property on the structural responses are also considered. The analytical results demonstrate that the non-stationary spatial ground motions have significant influence on the response of multi-support structures.

공공용 정보를 이용한 ADS-B 지상 항적 자료 분석 (Analysis of ADS-B ground trajectory data using non-aviation approval public data)

  • 구성관;백호종
    • 한국항공운항학회지
    • /
    • 제23권4호
    • /
    • pp.6-11
    • /
    • 2015
  • In this study, we surveyed analysis of ADS-B ground trajectory data using non-aviation approval public data. For analysis used non-aviation public data and commercial ADS-B receiver. The study result is available using ADS-B ground trajectory data for airfield surveillance on limited range. Also, to confirmed of available using non-aviation public data for aviation research.

Influence of concurrent horizontal and vertical ground excitations on the collapse margins of non-ductile RC frame buildings

  • Farsangi, E. Noroozinejad;Yang, T.Y.;Tasnimi, A.A.
    • Structural Engineering and Mechanics
    • /
    • 제59권4호
    • /
    • pp.653-669
    • /
    • 2016
  • Recent earthquakes worldwide show that a significant portion of the earthquake shaking happens in the vertical direction. This phenomenon has raised significant interests to consider the vertical ground motion during the seismic design and assessment of the structures. Strong vertical ground motions can alter the axial forces in the columns, which might affect the shear capacity of reinforced concrete (RC) members. This is particularly important for non-ductile RC frames, which are very vulnerable to earthquake-induced collapse. This paper presents the detailed nonlinear dynamic analysis to quantify the collapse risk of non-ductile RC frame structures with varying heights. An array of non-ductile RC frame architype buildings located in Los Angeles, California were designed according to the 1967 uniform building code. The seismic responses of the architype buildings subjected to concurrent horizontal and vertical ground motions were analyzed. A comprehensive array of ground motions was selected from the PEER NGA-WEST2 and Iran Strong Motions Network database. Detailed nonlinear dynamic analyses were performed to quantify the collapse fragility curves and collapse margin ratios (CMRs) of the architype buildings. The results show that the vertical ground motions have significant impact on both the local and global responses of non-ductile RC moment frames. Hence, it is crucial to include the combined vertical and horizontal shaking during the seismic design and assessment of non-ductile RC moment frames.

정보이론에 의한 LiDAR 원시자료의 건물포인트 분류기법 연구 (Building Points Classification from Raw LiDAR Data by Information Theory)

  • 최연웅;장영운;조기성
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2006년도 춘계학술발표회 논문집
    • /
    • pp.469-473
    • /
    • 2006
  • In general, a classification process between ground data and non-ground data, which include building objects, is required prior to producing a DEM for a certain surface reconstruction from LiDAR data in which the DEM can be produced from the ground data, and certain objects like buildings can be reconstructed using non-ground data. Thus, an exact classification between ground and non-ground data from LiDAR data is the most important factor in the ground reconstruction process using LiDAR data. In particular, building objects can be largely used as digital maps, orthophotos, and urban planning regarding the object in the ground and become an essential to providing three dimensional information for certain urban areas. In this study, an entropy theory, which has been used as a standard of disorder or uncertainty for data used in the information theory, is used to apply a more objective and generalized method in the recognition and segmentation of buildings from raw LiDAR data. In particular, a method that directly uses the raw LiDAR data, which is a type of point shape vector data, without any changes, to a type of normal lattices was proposed, and the existing algorithm that segments LiDAR data into ground and non-ground data as a binarization manner was improved. In addition, this study proposes a generalized building extraction method that excludes precedent information for buildings and topographies and subsidiary materials, which have different data sources.

  • PDF

Nonstationary Random Process를 이용한 인공지진파 발생 -설계응답스펙트럼에 의한 파워스펙트럼의 조정- (Generation of Artificial Earthquake Ground Motions using Nonstationary Random Process-Modification of Power Spectrum Compatible with Design Response Spectrum-)

  • 김승훈
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1999년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.61-68
    • /
    • 1999
  • In the nonlinear dynamic structural analysis the given ground excitation as an input should be well defined. Because of the lack of recorded accelerograms in Korea it is required to generate an artificial earthquake by a stochastic model of ground excitation with various dynamic properties rather than recorded accelerograms. It is well known that earthquake motions are generally non-stationary with time-varying intensity and frequency content. Many researchers have proposed non-stationary random process models. Yeh and Wen (1990) proposed a non-stationary modulation function and a power spectral density function to describe such non-stationary characteristics. Satio and Wen(1994) proposed a non-stationary stochastic process model to generate earthquake ground motions which are compatible with design reponse spectrum at sites in Japan. this paper shows the process to modify power spectrum compatible with target design response spectrum for generating of nonstationary artificial earthquake ground motions. Target reponse spectrum is chosen by ATC14 to calibrate the response spectrum according to a give recurrence period.

  • PDF