• Title/Summary/Keyword: Non-Gaussian

Search Result 507, Processing Time 0.024 seconds

NON-ZERO CONSTANT CURVATURE FACTORABLE SURFACES IN PSEUDO-GALILEAN SPACE

  • Aydin, Muhittin Evren;Kulahci, Mihriban;Ogrenmis, Alper Osman
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.247-259
    • /
    • 2018
  • Factorable surfaces, i.e. graphs associated with the product of two functions of one variable, constitute a wide class of surfaces in differential geometry. Such surfaces in the pseudo-Galilean space with zero Gaussian and mean curvature were obtained in [2]. In this study, we provide new results relating to the factorable surfaces with non-zero constant Gaussian and mean curvature.

x$^{(3)}$ Measurement through Self-focusing with Non-gaussian Beam (비 Gaussian 빛에 의한 자체집광을 이용한 x$^{(3)}$측정)

  • 이범구
    • Korean Journal of Optics and Photonics
    • /
    • v.4 no.4
    • /
    • pp.428-433
    • /
    • 1993
  • The second harmonic of Q-switched Nd:YAG laser beam with gaussian mode is cut off by pinhole of a certain radius and its central portion passed through pinhole is focused by converging lens. It is confirmed that the shape of this beam in focal region is central symmetric but non-gaussian. Change of transmittance due to self-focusing is investigated by scanning (z-scan) $CS_2$ of 1 mm thickness in the focal region. It is found that the observed results can be consistently explained by Fresnel theory within 1.5% accuracy and efficiency of self-focusing depends on spatial shape of incident beam.

  • PDF

Simple Detection Based on Soft-Limiting for Binary Transmission in a Mixture of Generalized Normal-Laplace Distributed Noise and Gaussian Noise

  • Kim, Sang-Choon
    • ETRI Journal
    • /
    • v.33 no.6
    • /
    • pp.949-952
    • /
    • 2011
  • In this letter, a simplified suboptimum receiver based on soft-limiting for the detection of binary antipodal signals in non-Gaussian noise modeled as a generalized normal-Laplace (GNL) distribution combined with Gaussian noise is presented. The suboptimum receiver has low computational complexity. Furthermore, when the number of diversity branches is small, its performance is very close to that of the Neyman-Pearson optimum receiver based on the probability density function obtained by the Fourier inversion of the characteristic function of the GNL-plus-Gaussian distribution.

Fusion of Decisions in Wireless Sensor Networks under Non-Gaussian Noise Channels at Large SNR (비 정규 분포 잡음 채널에서 높은 신호 대 잡음비를 갖는 무선 센서 네트워크의 정보 융합)

  • Park, Jin-Tae;Kim, Gi-Sung;Kim, Ki-Seon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.577-584
    • /
    • 2009
  • Fusion of decisions in wireless sensor networks having flexibility on energy efficiency is studied in this paper. Two representative distributions, the generalized Gaussian and $\alpha$-stable probability density functions, are used to model non-Gaussian noise channels. By incorporating noise channels into the parallel fusion model, the optimal fusion rules are represented and suboptimal fusion rules are derived by using a large signal-to-noise ratio(SNR) approximation. For both distributions, the obtained suboptimal fusion rules are same and have equivalent form to the Chair-Varshney fusion rule(CVR). Thus, the CVR does not depend on the behavior of noise distributions that belong to the generalized Gaussian and $\alpha$-stable probability density functions. The simulation results show the suboptimality of the CVR at large SNRs.

Non-Gaussian analysis methods for planing craft motion

  • Somayajula, Abhilash;Falzarano, Jeffrey M.
    • Ocean Systems Engineering
    • /
    • v.4 no.4
    • /
    • pp.293-308
    • /
    • 2014
  • Unlike the traditional displacement type vessels, the high speed planing crafts are supported by the lift forces which are highly non-linear. This non-linear phenomenon causes their motions in an irregular seaway to be non-Gaussian. In general, it may not be possible to express the probability distribution of such processes by an analytical formula. Also the process might not be stationary or ergodic in which case the statistical behavior of the motion to be constantly changing with time. Therefore the extreme values of such a process can no longer be calculated using the analytical formulae applicable to Gaussian processes. Since closed form analytical solutions do not exist, recourse is taken to fitting a distribution to the data and estimating the statistical properties of the process from this fitted probability distribution. The peaks over threshold analysis and fitting of the Generalized Pareto Distribution are explored in this paper as an alternative to Weibull, Generalized Gamma and Rayleigh distributions in predicting the short term extreme value of a random process.

Wind Data Simulation Using Digital Generation of Non-Gaussian Turbulence Multiple Time Series with Specified Sample Cross Correlations (임의의 표본상호상관함수와 비정규확률분포를 갖는 다중 난류시계열의 디지털 합성방법을 이용한 풍속데이터 시뮬레이션)

  • Seong, Seung-Hak;Kim, Wook;Kim, Kyung-Chun;Boo, Jung-Sook
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.5
    • /
    • pp.569-581
    • /
    • 2003
  • A method of synthetic time series generation was developed and applied to the simulation of homogeneous turbulence in a periodic 3 - D box and the hourly wind data simulation. The method can simulate almost exact sample auto and cross correlations of multiple time series and control non-Gaussian distribution. Using the turbulence simulation, influence of correlations, non-Gaussian distribution, and one-direction anisotropy on homogeneous structure were studied by investigating the spatial distribution of turbulence kinetic energy and enstrophy. An hourly wind data of Typhoon Robin was used to illustrate a capability of the method to simulate sample cross correlations of multiple time series. The simulated typhoon data shows a similar shape of fluctuations and almost exactly the same sample auto and cross correlations of the Robin.

An Order Statistic-Based Spectrum Sensing Scheme for Cooperative Cognitive Radio Networks in Non-Gaussian Noise Environments (비정규 잡음 환경에서 협력 무선인지 네트워크를 위한 순서 기반 스펙트럼 센싱 기법)

  • Cho, Hyung-Weon;Lee, Youngpo;Yoon, Seokho;Bae, Suk-Neung;Lee, Kwang-Eog
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.11
    • /
    • pp.943-951
    • /
    • 2012
  • In this paper, we propose a novel spectrum sensing scheme based on the order statistic for cooperative cognitive radio network in non-Gaussian noise environments. Specifically, we model the ambient noise as the bivariate isotropic symmetric ${\alpha}$-stable random variable, and then, propose a cooperative spectrum sensing scheme based on the order of observations and the generalized likelihood ratio test. From numerical results, it is confirmed that the proposed scheme offers a substantial performance improvement over the conventional scheme in non-Gaussian noise environments.

Blind Frequency Offset Estimation Scheme based on ML Criterion for OFDM-based CR Systems in Non-Gaussian Noise (비정규 잡음 환경에서 OFDM 기반 CR 시스템을 위한 ML 기반 블라인드 주파수 옵셋 추정 기법)

  • Kim, Jun-Hwan;Kang, Seung-Goo;Baek, Jee-Hyeon;Yoon, Seok-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.6C
    • /
    • pp.391-397
    • /
    • 2011
  • This paper investigates the frequency offset (PO) estimation scheme for the orthogonal frequency division multiplexing (OFDM)-based cognitive radio (CR) systems. In the CR environments, the conventional FO estimation schemes for the OFDM systems experience significant performance degradation due to the effect of the non-Gaussian noise. In this paper, a novel FO estimation scheme based on the maximum likelihood criterion is proposed for the OFDM-based CR systems in non-Gaussian noise environments. The proposed scheme does not require a specific pilot structure and has a better estimation performance compared with that of the conventional scheme.

Independent Component Biplot (독립성분 행렬도)

  • Lee, Su Jin;Choi, Yong-Seok
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.1
    • /
    • pp.31-41
    • /
    • 2014
  • Biplot is a useful graphical method to simultaneously explore the rows and columns of a two-way data matrix. In particular, principal component factor biplot is a graphical method to describe the interrelationship among many variables in terms of a few underlying but unobservable random variables called factors. If we consider the unobservable variables (which are mutually independent and also non-Gaussian), we can apply the independent component analysis decomposing a mixture of non-Gaussian in its independent components. In this case, if we apply the principal component factor analysis, we cannot clearly describe the interrelationship among many variables. Therefore, in this study, we apply the independent component analysis of Jutten and Herault (1991) decomposing a mixture of non-Gaussian in its independent components. We suggest an independent component biplot to interpret the independent component analysis graphically.