• Title/Summary/Keyword: Non-Dimensional Stress

Search Result 277, Processing Time 0.025 seconds

Stress distribution in bone surrounding maxillary molar implants under different crown-to-fixture ratio: A 3D FEM analysis (치관/고정체 비에 따른 상악 구치부 임플란트 주변골의 응력 분포에 대한 3차원 유한요소법적 분석)

  • Park, Jong-Chan;Shin, Sang-Wan;Kwon, Kung-Rock
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.5
    • /
    • pp.479-489
    • /
    • 2008
  • Statement of the problem: Under anatomical limitations on maxillary posterior region, a poor crown-to root ratio acting on dental implants can result in undesirable stress in surrounding bone, which in turn can cause bone defects and eventual failure of implants. Purpose: The purpose is to compare stress distribution due to different crown-root ratio and effect of splinting between natural teeth and implants in maxillary molar area under different loads. Material and methods: Analysis of stress arising supporting bone of the natural teeth and the implant was made with 3-dimensional finite element method. The model simulated naturel teeth was made with 2nd premolar and 1st molar in the maxillary molar region (Model T). The model simulated implants placed on same positions with two parallel implants of Straumann Dental Implant cemented abutment (Model I). Each model was designed in different crown-root ratio (0.7:1, 1:1, 1.25:1) and set cement type gold crown to make it non-splinted or splinted. After that, 300 N force was loaded to each model in five ways (Load 1: middle of occlusal table, Load 2: middle of buccal cusp, Load 3: middle of lingual cusp, Load 4: horizontal load to buccal cusp of anterior abutment only, Load 5: horizontal load to middle of buccal cusp of each abutment), and stress distribution was analyzed. Results and conclusion: On all occasions, stress was concentrated at the cervical region of the implant. Under load 1, 2 and 3, stress was not increased even when crown-root ratio increases, but under load 4 and 5, when crown-root ratio increases, stress also increased. There was difference in stress values between natural teeth and implants when crown-root ratio gradually increases; In case of natural teeth, splinting decreased stress under vertical and horizontal loads. In case of implants, splinting decreased stress under vertical loads 1,2 and 3, but increased maximal stress under loads 2 and 3. Under horizontal loads, splinting decreased stress, however the effect of splinting decreased under load 5 than load 4. Furthermore, the stress was increased, when crown-root ratio is 1.25:1. Clinical implications: This limited finite element study suggests that the stress on supporting bone may be increased under non-axial loads and poor crown-root ratio. Under poor crown-root ratio, excessive stress was generated at the cervical region of the implant, and decreased splinting effect for stress distribution, which can be related to clinical failure.

Finite Element Analysis for the Contact Stress of Ultra-high Molecular Weight Polyethylene in Total Knee Arthroplasty (전 슬관절 치환 성형술에 사용되는 초고분자량 폴리에틸렌 삽입물의 접촉응력에 관한 유한요소해석)

  • Jo, Cheol-Hyeong;Choe, Jae-Bong;Choe, Gwi-Won;Yun, Gang-Seop;Gang, Seung-Baek
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.1
    • /
    • pp.37-44
    • /
    • 1999
  • Because of bone resorption, wear of ultra-high molecular weight polyethylene(UHMWPE) in total knee arthroplasty has been recognized as a major factor in long-term failure of knee implant. The surface damage and the following harmful wear debris of UHMWPE is largely related to contact stress. Most of the previous studies focused on the contact condition only at the articulating surface of UHMWPE. Recently, contact stress at the metal-backing interface has been implicated as one of major factors in UHMWPE wear. Therefore, the purpose of the is study is to investigate the effect of the contact stress for different thickness, conformity friction coefficient, and flexion degree of the UHMWPE component in total knee system, considering the contact conditions at both interfaces. In this study, a two-dimensional non-linear plane strain finite element model was developed. The results showed that the maximum value of von-Mises stress occurred below the articulating surface and the contact stress was lower for the more conforming models. All-polyethylene component showed lower stress distribution than the metal-backed component. With increased friction coefficient on the tibiofemoral contact surface, the maximum shear stress increased about twofold.

  • PDF

The Development and its Application of Diagnostic Technique for Corrosion Defect of U-type Open Rack Vaporizer (개방형 U-type 기화기의 부식손상부 진단기법 개발 및 적용)

  • Jang S. Y.;Lee S. M.;Oh B. T.;Kho Y. T.
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.3 s.15
    • /
    • pp.45-50
    • /
    • 2001
  • Open rack vaporizer (ORV) has been used in liquefied natural gas (LNG) receiving terminal in order to vaporize LNG into natural gas (NG) by heat exchange with seawater The U-type ORV which had been operated with seawater for 14 years is one of the important utilities of the gas production and the weld part of tube connected with header_ pipe had experienced many corrosion problems. To elucidate the cause of corrosion at weld part of vaporizer tube, corrosion potentials were compared by parts. This study concerns on the measurement of corrosion pit depth using non-destructive method and the evaluation of stress distribution in an aspect of safety with finite element analysis. In order to confirm the reliability of galvanic corrosion between weld parts and base metal, the measurement of corrosion potential by parts was conducted for 20 minutes in 3.5$\%$(wt.) NaCl solution. Many non-destructive methods were tried to measure the remaining thickness of vaporizer tube at fields. For general corrosion, tangential radiography test was confirmed as an effective method. In case of a fine corrosion pit, the shape of corrosion pit was reproduced using surface replication method. From collected data, stress distributions were quantitatively evaluated with 2-dimensional finite element method and the diagnostic evaluation on internal pressure of the U-type vaporizer could be made.

  • PDF

Relationship between Problematic Drinking Behavior and the Personalities of High School Students (고등학생의 음주문제행동과 성격특성)

  • Cho, Won-Jung;Kim, Gwang-Suk;Seo, Ku-Min;Kwon, In-Sook
    • Research in Community and Public Health Nursing
    • /
    • v.15 no.3
    • /
    • pp.471-482
    • /
    • 2004
  • Purpose: This study intended to identify personality factors and related problematic behaviors of adolescents who drink alcohol in order to provide basic data for developing nursing programs. Methods: The data were collected from October to December 2002 from 1.080 high school students in Seoul. The Revised Cloninger's Tri-dimensional Personality Questionnaire (TPQ) was used to measure their personalities. The alcohol expectancy was measured using the tool revised by Cho (1999) and stress levels were measure using a stress tool revised Cho (1998). The data were analyzed with SPSS Windows using Chi square test. independent t-test. and logistic regression analysis. Results: 1. The percentage of fathers who drank was 79.8%. mothers. 54.3%. and friends. 54.3%. The alcohol expectancy averaged 6.36 while the stress levels were 132.79. 2. It was found that there are significant differences (p<.001) in problematic drinking behaviors according to the following variables: second year high school students among all grade variables, more monthly pocket money for the amount of money variables, the group of students who smoked in the case of the variable related to smoking, spending more time using the Internet for the Internet use variable, and having friends who drink 65.6% for the friend variable. The alcohol expectancy scale of those students who showed problematic drinking behaviors was higher than that of those who did not. There are four family-related stress subscales, and there was a significant difference among them (p<.05). Among the personal characteristics, the group who displayed problematic drinking behaviors seeks new experiences and reward dependence more than the group who did not exhibit those behaviors, and there were significant differences between the two groups (p<.001). 3. When the socio-demographic and drinking-related factors were controlled, the tendency of seeking new experiences increased the risk of problematic behaviors 1.07 times (p<.05). Compared to the non smoking group, the smoking group was found to have a 5.06 time (p<.001) greater risk of displaying problematic drinking behaviors. In comparison with the non drinking group, the drinking group was also found to have a 5.31 time (p<.001) greater risk of exhibiting problematic drinking behaviors. The group with high alcohol expectancy scores was significantly different from the group with the no alcohol expectancy, showing a 1.26 time (p<.00l) greater risk of problematic drinking behaviors. Conclusions: Based on these results, the problematic drinking behaviors were connected with alcohol expectancies, friends and personality types. Therefore, we should develop an alcoholic prevention program for adolescence considering the above results.

  • PDF

Volume Transport on the Texas-Louisiana Continental Shelf

  • Cho Kwang-Woo
    • Fisheries and Aquatic Sciences
    • /
    • v.1 no.1
    • /
    • pp.48-62
    • /
    • 1998
  • Seasonal volume transport on the Texas-Louisiana continental shelf is investigated in terms of objectively fitted transport streamfunction fields based on the current meter data of the Texas­Louisiana Shelf Circulation and Transport Processes Study. Adopted here for the objective mapping is a method employing a two-dimensional truncated Fourier representation of the streamfunction over a domain, with the amplitudes determined by least square fit of the observation. The fitting was done with depth-averaged flow rather than depth-integrated flow to reduce the root-mean-square error. The fitting process filters out $11\%$ of the kinetic energy in the monthly mean transport fields. The shelf-wide pattern of streamfunction fields is similar to that of near-surface velocity fields over the region. The nearshore transport, about 0.1 to 0.3 Sv $(1 Sv= 10^6\;m^3/sec)$, is well correlated with the seasonal signal of along-shelf wind stress. The spring transport is weak compared to other seasons in the inner shelf region. The transport along the shelf break is large and variable. In the southwestern shelf break, transport amounts up to 4.7 Sv, which is associated with the activities of the encroaching of energetic anticyclonic eddies originated in Loop Current of the eastern Gulf of Mexico. The first empirical orthogonal function (EOF) of streamfunction variability contains $67.3\%$ of the variance and shows a simple, shelf-wide, along-shelf pattern of transport. The amplitude evolution of the first EOF is highly correlated (correlation coefficient: 0.88) with the evolution of the along-shelf wind stress. This provides strong evidence that the large portion of seasonal variation of the shelf transport is wind-forced. The second EOF contains $23.7\%$ of the variance and shows eddy activities at the southwestern shelf break. The correlation coefficient between the amplitudes of the second EOF and wind stress is 0.42. We assume that this mode is coupled a periodic inner shelf process with a non-periodic eddy process on the shelf break. The third EOF (accounting for $7.2\% of the variance) shows several cell structures near the shelf break associated with the variability of the Loop Current Eddies. The amplitude time series of the third EOF show little correlation with the along-shelf wind.

  • PDF

Effect of the Bottom Slope on the Formation of Coastal Front and Shallow-Sea Structure during Cold-Air Outbreak

  • Cheong, Hyeong-Bin;Kim, Young-Seup;Hong, Sung-Keun;Cheong, Hyeong-Bin
    • Journal of the korean society of oceanography
    • /
    • v.32 no.3
    • /
    • pp.93-102
    • /
    • 1997
  • Coastal circulations during the (surface condition of an) idealized cold-air outbreak are numerically investigated with two-dimensional, non-hydrostatic model in which a constant bottom-slope exists. The atmospheric forcing during a cold-air outbreak is incorporated as the surface cooling and the wind stress. When the offshore angle of the wind-stress vector, defined as the angle measured from the alongshore axis, is smaller than 45 degrees, a strong downwelling circulation develops near the coast. A sharp density front, which separates the vertically homogeneous region from the offshore stratified region, is formed near the coast and propagates offshore with time. Onshore side of the density front, small-scale circulation cells which are aligned in the direction perpendicular to the bottom begin to develop as the near-coast homogeneous region broadens. The surface cooling enhances greatly the development of the surface mixed layer by convective motions due to hydrostatic instability. The convective motions reach far below the hydrostatically unstable layer which is attached to the surface. The small-scale circulation cells are appreciably modified by the convetion cell and the density front develops far offshore compared to the case of no surface cooling. As to the effect of the bottom slope, the offshore distance of the density front increases (decreases) as the bottom slope decreases (increases), which results from the fact that the onshore volume-transport (Ekman transport) of the low-density upper seawater remains almost constant when the wind-stress is maintained constant. It is shown that the bottom slope is an essential factor for the formation of both the density front and the alongshore current when the surface cooling is the only forcing.

  • PDF

Large Deflection and Elastoplastic Analysis of the Plane Framed Structure Using Isoparametric Curved Beam Element (Isoparametric 곡선(曲線) 보요소(要素)를 이용한 평면(平面)뼈대 구조물(構造物)의 대변형(大變形) 및 탄소성(彈塑性) 유한요소해석(有限要素解析))

  • Kim, Moon Young;Shin, Hyun Mock;Lee, Chang Yong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.41-49
    • /
    • 1993
  • This paper presents a geometrically non-linear and elastoplastic F.E. formulation using a total Lagrangian approach for the two dimensional isoparametric curved beam elements. The beam element is derived by using plane stress elements. The basic element geometry is constructed using the coordinates of the nodes on the element center line and the nodal point normals. The element displacement field is described using two translations of the node on the center line and a rotation about the axes normal to the plane containing the center line of the element. The layered approach is used for the elastoplastic analysis of the plane framed structure with the arbitrary cross section. The iterative load or displacement incremental method for non-linear finite element analysis of the frame structure is used. Numerical examples are presented to demonstrate the behavior and the accuracy of the proposed beam element for geometric and elastoplastic non-linear applications. Comparisons made with present theory and other published data show that tilt' beam element products accurate results with good convergence characteristics.

  • PDF

Numerical FEM assessment of soil-pile system in liquefiable soil under earthquake loading including soil-pile interaction

  • Ebadi-Jamkhaneh, Mehdi;Homaioon-Ebrahimi, Amir;Kontoni, Denise-Penelope N.;Shokri-Amiri, Maedeh
    • Geomechanics and Engineering
    • /
    • v.27 no.5
    • /
    • pp.465-479
    • /
    • 2021
  • One of the important causes of building and infrastructure failure, such as bridges on pile foundations, is the placement of the piles in liquefiable soil that can become unstable under seismic loads. Therefore, the overarching aim of this study is to investigate the seismic behavior of a soil-pile system in liquefiable soil using three-dimensional numerical FEM analysis, including soil-pile interaction. Effective parameters on concrete pile response, involving the pile diameter, pile length, soil type, and base acceleration, were considered in the framework of finite element non-linear dynamic analysis. The constitutive model of soil was considered as elasto-plastic kinematic-isotropic hardening. First, the finite element model was verified by comparing the variations on the pile response with the measured data from the centrifuge tests, and there was a strong agreement between the numerical and experimental results. Totally 64 non-linear time-history analyses were conducted, and the responses were investigated in terms of the lateral displacement of the pile, the effect of the base acceleration in the pile behavior, the bending moment distribution in the pile body, and the pore pressure. The numerical analysis results demonstrated that the relationship between the pile lateral displacement and the maximum base acceleration is non-linear. Furthermore, increasing the pile diameter results in an increase in the passive pressure of the soil. Also, piles with small and big diameters are subjected to yielding under bending and shear states, respectively. It is concluded that an effective stress-based ground response analysis should be conducted when there is a liquefaction condition in order to determine the maximum bending moment and shear force generated within the pile.

FINITE ELEMENT STRESS ANALYSIS OF IMPLANT PROSTHESIS ACCORDING TO PLATFORM WIDTH OF FIXTURE (임플란트 고정체의 platform의 크기에 따른 유한요소법적 응력분석)

  • Chung Kyung-Min;Chung Chae-Heon;Jeong Seung-Mi
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.5
    • /
    • pp.674-688
    • /
    • 2003
  • Statement of Problem : With increasing demand of the implant-supported prosthesis, it is advantageous to use the different platform width of the fixture according to bone quantity and quality of the patients. Purpose : The purpose of this study was to assess the loading distributing characteristics of two implant designs according to each platform width of fixture, under vertical and inclined loading using finite element analysis. Material and method : The two kinds of finite element models were designed according to each platform width of future (4.1mm restorative component x 11.5mm length, 5.0mm wide-diameter restorative component x 11.5mm length). The crown for mandibular first molar was made using UCLA abutment. Each three-dimensional finite element model was created with the physical properties of the implant and surrounding bone. This study simulated loads of 200N at the central fossa in a vertical direction, 200N at the outside point of the central fossa with resin filling into screw hole in a vertical direction and 200N at the buccal cusp in a 300 transverse direction individually Von Mises stresses were recorded and compared in the supporting bone, fixture, and abutment screw. Results : The stresses were concentrated mainly at the cortex in both vertical and oblique load ing but the stresses in the cancellous bone were low in both vertical and oblique loading. Bending moments resulting from non-axial loading of dental implants caused stress concentrations on cortical bone. The magnitude of the stress was greater with the oblique loading. Increasing the platform width of the implant fixture decreased the stress in the supporting bone, future and abutment screw. Increased the platform width of fixture decreased the stress in the crown and platform. Conclusion : Conclusively, this investigation provides evidence that the platform width of the implant fixture directly affects periimplant stress. By increasing the platform width of the implant fixture, it showed tendency to decreased the supporting bone, future and screw. But, further clinical studies are necessary to determine the ideal protocol for the successful placement of wide platform implants.

A three-dimensional finite-element analysis of influence of splinting in mandibular posterior implants (스프린팅이 하악 구치부 임플랜트 보철물의 응력분산에 미치는 영향에 관한 삼차원 유한요소분석 연구)

  • Baik, Sang-Hyun;Jang, Ik-Tae;Kim, Sung-Kyun;Koak, Jai-Young;Heo, Seong-Joo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.2
    • /
    • pp.157-168
    • /
    • 2008
  • Statement of problem: Over the past two decades, implant supported fixed prosthesis have been widely used. However, there are few studies conducted systematically and intensively on the splinting effect of implant systems in mandible. Purpose: The purpose of this study was to investigate the changes in stress distributions in the mandibular implants with splinting or non-splinting crowns by performing finite element analysis. Materials and methods: Cortical and cancellous bone were modeled as homogeneous, transversely isotropic, linearly elastic. Perfect bonding was assumed at all interfaces. Implant models were classified as follows. Group 1: $Br{{\aa}}nemark$ length 8.5mm 13mm splinting type Group 2: $Br{{\aa}}nemark$ length 8.5mm 13mm Non-splinting type Group 3: ITI length 8.5mm 13mm splinting type Group 4: ITI length 8.5mm 13mm Non-splinting type An load of 100N was applied vertically and horizontally. Stress levels were calculated using von Mises stresses values. Results: 1. The stress distribution and maximum von Mises stress of two-length implants (8.5mm, 13mm) was similar. 2. The stress of vertical load concentrated on mesial side of implant while the stress of horizontal load was distributed on both side of implant. 3. Stress of internal connection type was spreading through abutment screw but the stress of external connection type was concentrated on cortical bone level. 4. Degree of stress reduction was higher in the external connection type than in the internal connection type.