• Title/Summary/Keyword: Non-Cooperative Game

Search Result 59, Processing Time 0.019 seconds

Case Analysis of Conflicts in Renewable Power Generation Projects Using Non-cooperative Game Theory (비협조적 게임이론을 활용한 신재생발전사업 갈등 사례분석)

  • Park, Jaehyon;Kim, Kyeongkuk;Kim, Kyeongseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.215-221
    • /
    • 2024
  • The government is encouraging the expansion of renewable energy facilities through national renewable energy policy. However, the installation of renewable energy generation facilities has led to local resident complaints due to landscape degradation, electromagnetic wave emission, real estate devaluation, and environmental pollution. This creates conflicts between power project developers and residents, making the progress of projects more difficult. This study applies non-cooperative game theory to analyze eight cases of renewable energy projects where conflicts between developers and residents were resolved through resident's investment participation. By accepting investments from local stakeholders, residents achieved returns ranging from a maximum of 25 % to a minimum of 4.1 %. It was found through game theory analysis that a dominant strategy involves residents agreeing to the development of the project and the developers sharing a portion of the profits with the residents. The analysis results show that the point where dominant strategy meet forms a Nash equilibrium, and at the same time becomes the Pareto optimal point, benefiting both power generation operators and residents.

Game Theoretic Approach for Energy Efficient Rate Scheduling on the interference channel (간섭채널에서 에너지 효율적인 전송률 스케줄링을 위한 게임이론적 접근)

  • Oh, Chang-Yoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.8
    • /
    • pp.55-62
    • /
    • 2014
  • A game theoretic approach is applied for studying the energy efficient rate scheduling. The individual utility function is defined first. Then, a non cooperative rate game is modeled in which each user decides the transmission rate to maximize its own utility. The utility function considered here is the consumed energy for the individual user's data transmissions. In particular, using the fact that the utility function is convex, we prove the existence of Nash Equilibrium in the energy efficient rate scheduling problem at hand. Accordingly, a non cooperative scheduling algorithm is provided. For better energy efficiency, the sum of the individual user's utility function is optimized Finally, the convergence analysis and numerical results to show the energy efficiency of the proposed algorithms are provided.

Fair Power Control Using Game Theory with Pricing Scheme in Cognitive Radio Networks

  • Xie, Xianzhong;Yang, Helin;Vasilakos, Athanasios V.;He, Lu
    • Journal of Communications and Networks
    • /
    • v.16 no.2
    • /
    • pp.183-192
    • /
    • 2014
  • This paper proposes a payment-based power control scheme using non-cooperative game with a novel pricing function in cognitive radio networks (CRNs). The proposed algorithm considers the fairness of power control among second users (SUs) where the value of per SU' signal to noise ratio (SINR) or distance between SU and SU station is used as reference for punishment price setting. Due to the effect of uncertainty fading environment, the system is unable to get the link gain coefficient to control SUs' transmission power accurately, so the quality of service (QoS) requirements of SUs may not be guaranteed, and the existence of Nash equilibrium (NE) is not ensured. Therefore, an alternative iterative scheme with sliding model is presented for the non-cooperative power control game algorithm. Simulation results show that the pricing policy using SUs' SINR as price punishment reference can improve total throughput, ensure fairness and reduce total transmission power in CRNs.

Analysis Technique on Collusive Bidding Incentives in a Competitive Generation Market (경쟁형 전력시장에서 입찰담합의 유인에 대한 분석 기법 연구)

  • Lee, Kwang-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.6
    • /
    • pp.259-264
    • /
    • 2006
  • This paper addresses the collusive bidding that functions as a potential obstacle to a fully competitive wholesale electricity market. Cooperative game is formulated and the equation of its Nash Equilibrium (NE) is derived on the basis of the supply function model. Gencos' willingness to selectively collude is expressed through a bargain theory. A Collusion Incentive Index(CII) for representing the willingness is defined through computing the Gencos' profits at NE. In order to keep the market non-cooperative, the market operator has to know the highest potentially collusive combination among the Gencos. Another index, which will be called the Collusion Monitoring Index(CMI), is suggested to detect the highest potential collusion and it is calculated using the marginal cost functions of the Gencos without any computation of NE. The effectiveness of CMI for detecting the highest potential collusion is verified through application on many test market cases.

An Alternative Approach for Environmental Education to overcome free rider egoism based on the Perspectives of Prisoner's Dilemma Situation (죄수딜렘마(PD) 게임상황을 활용한 환경교육의 가능성)

  • 김태경
    • Hwankyungkyoyuk
    • /
    • v.13 no.2
    • /
    • pp.38-50
    • /
    • 2000
  • We are evidently Home Economicus, egoistic rational utility maximiger, and all the capitalism economic situation make us adapt to such life, and recognize that it is rational to act like that. This can be demonstrated in Prisoner′s Dilemma(PD) which always select the non-cooperative choice for free rider in rational selection process of public goods. This paper notice the "what is problem\ulcorner"The problem is not in free rider itself but in free rider egoism. The practical behavior of free rider egoism can be explained by way of Prisoner′s Dilemma. In PD situation, the prisoner makes a rational choice, non-cooperative alternative, but he doesn′arrive at preto-optimality. It is dilemma. Why can′t he arrive \ulcorner Because he is isolated from other prisoner. So we call it prisoner′s dilemma. The PD situation can be compared with our real economic life, which, we think, have kept by rational choice of the public goods. We actually have made our life as an individual one although we organized communities of capitalism. Of course, we know each others as members of same society, but each individual being can′t secure the belief, which has composed basis of community. So, it is very similar and common between PD situation and our real economic life in the production of public goods. We conclude that this non-cooperative process of PD situation can be utilized as instrument of EE. So this non-cooperative process can show us the effectiveness of EE as follows. \circled1 Game situation life PD can be used as good instrument for explaining the rational selection dilemma(error) to Homo-Economicus, the rational agent, with the optimal and rational language. \circled2 We can show that the selection result is dilemma, not arrive pareto - optimality. \circled3 The dilemma can be resolved with accomplishing the good communal life based on the belief, not on the isolation.

  • PDF

The Fleet Operating Strategies for Ocean Container Carriers in a East Asian Shipping Market: A Game Theoretic Approach (동아시아 해운시장의 컨테이너선사 선대 운항전략: 게임이론 접근법)

  • Park, Byungin
    • Journal of Korea Port Economic Association
    • /
    • v.29 no.4
    • /
    • pp.73-95
    • /
    • 2013
  • This paper analyzes a competitive shipping market in East Asia in order to explore how container carriers make decisions on ship size, number of ships, service frequency, and service route. A sequential-move game based on non-cooperative game theory is applied to establish the models for the decision-makings involving the transportation volumes, freight rates, costs, and market shares of the service routes from Shanghai or Hong Kong to the ports in Busan, Gwangyang, and Incheon. According to the sub-game perfect Nash equilibrium solutions proposed by these models, carriers' decisions in such a competitive environment vary depending on sailing distance, transport demand, and freight rates. Therefore, carriers are recommended to reflect the optimal equilibrium solutions and a variety of decision factors when formulating strategies for transportation networks and operating fleets. Furthermore, ports should establish management strategies for these factors to provide optimal equilibrium solutions for carriers' transportation networks.

Interference Management Algorithm Based on Coalitional Game for Energy-Harvesting Small Cells

  • Chen, Jiamin;Zhu, Qi;Zhao, Su
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.9
    • /
    • pp.4220-4241
    • /
    • 2017
  • For the downlink energy-harvesting small cell network, this paper proposes an interference management algorithm based on distributed coalitional game. The cooperative interference management problem of the energy-harvesting small cells is modeled as a coalitional game with transfer utility. Based on the energy harvesting strategy of the small cells, the time sharing mode of the small cells in the same coalition is determined, and an optimization model is constructed to maximize the total system rate of the energy-harvesting small cells. Using the distributed algorithm for coalition formation proposed in this paper, the stable coalition structure, optimal time sharing strategy and optimal power distribution are found to maximize the total utility of the small cell system. The performance of the proposed algorithm is discussed and analyzed finally, and it is proved that this algorithm can converge to a stable coalition structure with reasonable complexity. The simulations show that the total system rate of the proposed algorithm is superior to that of the non-cooperative algorithm in the case of dense deployment of small cells, and the proposed algorithm can converge quickly.

Analysis of the Success Factors of Open Innovation fromthe Perspective of Cooperative Game Theory: Focusing on the Case of Collaboration Between Korean Large Company 'G' and Startup 'S' (협조적 게임이론 관점에서 본 대기업-스타트업 개방형 혁신 성공 요인 분석: 대기업 'G사'와 스타트업 'S사'의 협업 사례를 중심으로)

  • Jinyoung Kim;Jaehong Park;Youngwoo Sohn
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.19 no.2
    • /
    • pp.159-179
    • /
    • 2024
  • Based on the case of collaboration between large companies and startups, this study suggests the importance of establishing mutual cooperation and trust relationships for the success of open innovation strategy from the perspective of cooperative game theory. It also provides implications for how this can be implemented. Due to information asymmetry and differences in organizational culture and decision-making structures between large companies and startups, collaboration is likely to proceed in the form of non-cooperative games among players in general open innovation, leading to the paradox of open innovation, which lowers the degree of innovation. Accordingly, this study conducted a case study on collaboration between large company 'G' and startup 'S' based on the research question "How did we successfully promote open innovation through cooperative game-type collaboration?" The study found that successful open innovation requires (1) setting clear collaboration goals to solve the organizational problem between large companies and startups, (2) supporting human resources for qualitative growth of startups to solve reliability problems, (3) leading to strategic investment and joint promotion of new projects to solve the profit distribution problem. This study is significant in that it contributes to expanding the discussion of the success factors of open innovation to the importance of interaction and strategic judgment considering the organizational culture and decision-making structure among players, and empirically confirming the success conditions of open innovation from the perspective of cooperative game theory.

  • PDF

A Dynamic Game of R & D Investment Under Technology Transfer (기술이전하에서의 연구개벌투자에 관한 동적게임)

  • 오형식
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.11 no.2
    • /
    • pp.7-12
    • /
    • 1986
  • The problem of strategic R & D investment is formulate as a differential game model and solved explicity for a special case. It is shown that, at equilibrium, an increase in the intensity of market competition or a decrease in the role of technology transfer results in an increase in the initial rate of investment by competing tfirms. The increased initial investment rate may enhance the rate of technology development. This dynamic model can be used to propose non cooperative R & D investment policies in technologically competitive situation.

  • PDF

An Analytical Investigation for Nash Equilibriums of Generation Markets

  • Kim Jin-Ho;Won Jong-Ryul;Park Jong-Bae
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.1
    • /
    • pp.85-92
    • /
    • 2005
  • In this paper, Nash equilibriums of generation markets are investigated using a game theory application for simplified competitive electricity markets. We analyze the characteristics of equilibrium states in N-company spot markets modeled by uniform pricing auctions and propose a new method for obtaining Nash equilibriums of the auction. We assume that spot markets are operated as uniform pricing auctions and that each generation company submits its bids into the auction in the form of a seal-bid. Depending on the bids of generation companies, market demands are allocated to each company accordingly. The uniform pricing auction in this analysis can be formulated as a non-cooperative and static game in which generation companies correspond to players of the game. The coefficient of the bidding function of company-n is the strategy of player-n (company-n) and the payoff of player-n is defined as its profit from the uniform price auction. The solution of this game can be obtained using the concept of the non-cooperative equilibrium originating from the Nash idea. Based on the so called residual demand curve, we can derive the best response function of each generation company in the uniform pricing auction with N companies, analytically. Finally, we present an efficient means to obtain all the possible equilibrium set pairs and to examine their feasibilities as Nash equilibriums. A simple numerical example with three generation companies is demonstrated to illustrate the basic idea of the proposed methodology. From this, we can see the applicability of the proposed method to the real-world problem, even though further future analysis is required.