• Title/Summary/Keyword: Non destructive testing

Search Result 535, Processing Time 0.025 seconds

Flaw Detection in Ceramics using Hough transform and Least squares

  • Hong, Dong-Jin;Cha, Eui-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.10
    • /
    • pp.23-29
    • /
    • 2015
  • In this paper, we suggest a method of detecting defects by applying Hough transform and least squares on ceramic images obtained from non-destructive testing. In the ceramic images obtained from non-destructive testing, the background area, where the defect does not exist, commonly show gradual change of luminosity in vertical direction. In order to extract the background area which is going to be used in the detection of defects, Hough transform is performed to rotate the ceramic image in a way that the direction of overall luminosity change lies in the vertical direction as much as possible. Least squares are then applied on the rotated image to approximate the contrast value of the background area. The extracted background area is used for extracting defects from the ceramic images. In this paper we applied this method on ceramic images acquired from non-destructive testing. It was confirmed that extracted background area could be effectively applied for searching the section where the defect exists and detecting the defect.

Detection of Subsurface Defects in Metal Materials Using Infrared Thermography; Image Processing and Finite Element Modeling

  • Ranjit, Shrestha;Kim, Won Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.2
    • /
    • pp.128-134
    • /
    • 2014
  • Infrared thermography is an emerging approach to non-contact, non-intrusive, and non-destructive inspection of various solid materials such as metals, composites, and semiconductors for industrial and research interests. In this study, data processing was applied to infrared thermography measurements to detect defects in metals that were widely used in industrial fields. When analyzing experimental data from infrared thermographic testing, raw images were often not appropriate. Thus, various data analysis methods were used at the pre-processing and processing levels in data processing programs for quantitative analysis of defect detection and characterization; these increased the infrared non-destructive testing capabilities since subtle defects signature became apparent. A 3D finite element simulation was performed to verify and analyze the data obtained from both the experiment and the image processing techniques.

Estimation of concrete strength by non-destructive combined method and its application (복합비파괴검사법에 의한 콘크리트 강도평가와 그 응용)

  • Hahn, Hyuk-Sang
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.12 no.1
    • /
    • pp.35-39
    • /
    • 1992
  • The purpose of this report is to obtain a practical expression for estimating the compressive strength of concrete using the non-destructive method of testing combining rebound number and ultrasonic pulse velocity at the construction sites for obtaining highest accuracy in predicting the compressive strength.

  • PDF

Analysis of Vulnerable Parts based on Non-destructive Testing Data of Tower Crane Welding Parts (타워크레인의 용접부 비파괴검사 데이터 기반 취약부위 분석)

  • Jeong, SeongMo;Lim, Jae-Yong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.2
    • /
    • pp.50-56
    • /
    • 2021
  • The purpose of this study is to investigate vulnerable parts of tower crane structures by analyzing extensive non-destructive test data. Approximately ten percent of domestically registered tower cranes were inspected by using magnetic particle inspection. The testing was carried out as advised in KS B 0213. The non-destructive results was analyzed with respect to jib types, age and crane size. As a result, the number of crack occurrences were the largest in mast parts, followed by main jib part. Moreover, it was found that turntables were important parts deserved to be noticed at the perspective of safe maintenance.

In situ dynamic investigation on the historic "İskenderpaşa" masonry mosque with non-destructive testing

  • Gunaydin, Murat
    • Smart Structures and Systems
    • /
    • v.26 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • Turkey is a transcontinental country located partly in Asia and partly in Europe, and hosted by diverse civilizations including Hittite, Urartu, Lydia, Phrygia, Pontius, Byzantine, Seljuk's and Ottomans. At various times, these built many historic monuments representing the most significant characteristics of their civilizations. Today, these monuments contribute enormously to the esthetic beauty of environment and important to many cities of Turkey in attracting tourism. The survival of these monuments depends on the investigation of structural behavior and implementation of needed repairing and/or strengthening applications. Hence, many countries have made deeper investigations and regulations to assess their monuments' structural behavior. This paper presents the dynamic behavior investigation of a monumental masonry mosque, the "İskenderpaşa Mosque" in Trabzon (Turkey), by performing an experimental examination with non-destructive testing. The dynamic behavior investigation was carried out by determining the dynamic characteristic called as natural frequencies, mode shapes and damping ratios. The experimental dynamic characteristics were extracted by Operational Modal Analysis (OMA). In addition, Finite Element (FE) model of masonry mosque was constructed in ANSYS software and the numerical dynamic characteristics such as natural frequencies and mode shapes were also obtained and compared to experimental ones. The paper aims at presenting the non-destructive testing procedure of a masonry mosque as well as the comparison of experimental and numerical dynamic characteristics obtained from the mosque.

Evaluation of Non Destructive Inspection Interval for Running Safety of Railway Axle (철도차량 안전성을 위한 주행 차축의 비파괴 검사주기 평가)

  • Kwon, Seok Jin;Lee, Dong Hyung;Seo, Jung Won;Kim, Jae Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.9
    • /
    • pp.777-782
    • /
    • 2014
  • Usually, railway axles are designed for infinite life based on endurance limit of the material and the axle is not fractured immediately when a surface crack initiated. The railway axles have been inspected regularly by NDT such as ultrasonic testing, magnetic testing and eddy current testing and so on. Because the axle failure is profoundly influenced by the probability of missing a fatigue crack during an NDT inspection, it is necessary to evaluate the Non Destructive Interval of railway axle. In the present paper, the Non Destructive Interval of railway axle based on fracture mechanics and finite element analysis was investigated. It was shown that the Non Destructive Interval of railway axle can be evaluated using fracture mechanics approach and extended using NDT which a crack can detect clearly.

Evaluation of Flow Properties of Steel Using Advanced Indentation System (비파괴적 연속압입시험 기법을 응용한 구조용 강의 소성 물성 평가)

  • Jang, J.I.;Son, D.I.;Choi, Y.;Park, S.C.;Kwon, D.I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.191-194
    • /
    • 2002
  • The tensile properties of materials can be obtained just in accordance with conventional tensile testing methods which are described in several standards. However, the standard testing methods cannot be applicable due to the destructive testing procedure and specimen size requirement for some cases including on-service facility materials. Therefore, simple, non-destructive and advanced indentation technique was proposed. This test measures indentation load-depth curve during indentation and analyzes the mechanical properties related to deformation and fracture. In this paper, the research trend of non-destructive evaluation of tensile properties using advanced indentation system and its application fields are reviewed and discussed.

  • PDF

Detection of Flaws in Air Deck using Non-Destructive Testing (비파괴 검사를 이용한 항공 갑판의 결함 검출)

  • Kim, Kwang-Baek;Cho, Jae-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.9
    • /
    • pp.1865-1870
    • /
    • 2011
  • In this paper, we propose an effective method that automatically detects flaws in air deck by using non-destructive testing. First, Gamma correlation transform, 7 ${\times}$ 7 and 13 ${\times}$ 13 Sobel mask apply to the image of air deck acquired non-destructive testing in order to detect the edge of the image. Second, the edge detection area is smoothed and corrected by mean binarization method. Finally, the region of flaws in air deck is detected by a labeling method after removing the noise by the erosion and the dilation operation. In experimental results, we showed that the proposed detection method is effective in air deck.

A Design and Experiment of Pressure and Shape Adaptive Mechanism for Detection of Defects in Wind Power Blade (풍력 발전용 블레이드 접합부의 결함 검출을 위한 일정가압 메커니즘 설계 및 실험)

  • Lim, Sun;Lim, Seung Hwan;Jeong, Ye Chan;Chi, Su Chung;Nam, Mun Ho
    • Journal of Applied Reliability
    • /
    • v.17 no.3
    • /
    • pp.224-235
    • /
    • 2017
  • Purpose: Reliability is the most important factor to detect defects as wind turbines are deployed in large blades. The methods of detecting defects are various, such as non-destructive inspection and thermal imaging inspection. We propose the phased array ultrasonic testing method of non-destructive testing. Methods: We propose the active pressure mechanism for wind power blade. The phase array ultrasonic inspection method is used for fault detection inner blade surface. Controlled pressure of mechanism with respect to z-axis is important for guarantee the result of phase array ultrasonic inspection. The model based control and proposed mechanism are utilized for overall system stability and effectiveness of system. Result: The result of proposed pressure mechanism B is more stable than A. Convergence speed is also faster than A. Conclusion: We confirmed the performance of the proposed constant pressure mechanism through experiments. Non-destructive testing was applied to the specimen to confirm the reliability of detecting defects.

A Study on the Determination of a Minimum Cost Sampling Inspection Plan for Destructive Testing (파괴검사(破壞檢査)에 있어서의 최소비용(最少費用) 샘플링 검사방식(檢査方式)의 결정(決定)에 관한 연구(硏究) - 계수파괴(計數破壞) 1회검사(回檢査)를 중심(中心)으로 -)

  • Hwang, Ui-Cheol;Jeong, Yeong-Bae
    • Journal of Korean Society for Quality Management
    • /
    • v.8 no.2
    • /
    • pp.15-22
    • /
    • 1980
  • This paper deals with the problem of determining a minimum cost sampling inspection plan for a single destructive testing by attribute. The cost for inspection lot is constructed by following three cost factors: (1) cost of inspection, (2) cost of accepted defective, (3) cost of rejected lot Using Hald's Bayesian approach in a single non-destructive testing, procedure's for finding the minimum cost single destructive sampling inspection plan by attribute are given. Assuming the uniform distribution as a prior-distribution and using numerical analysis by computer, a minimum cost single destructive sampling inspection plan by attribute for several lot sizes, unit cost, destructive testing cost, and salvage cost is given.

  • PDF