Journal of the Korean Data and Information Science Society
/
v.14
no.1
/
pp.131-141
/
2003
In this paper, we prove that multi-variate fuzzy polynomials are universal approximators for multi-variate fuzzy functions which are the extension principle of continuous real-valued function under $T_W-based$ fuzzy arithmetic operations for a distance measure that Buckley et al.(1999) used. We also consider a class of fuzzy polynomial regression model. A mixed non-linear programming approach is used to derive the satisfying solution.
Local composite quantile regression is a useful non-parametric regression method widely used for its high efficiency. Data smoothing methods using kernel are typically used in the estimation process with performances that rely largely on the smoothing parameter rather than the kernel. However, $L_2$-norm is generally used as criterion to estimate the performance of the regression function. In addition, many studies have been conducted on the selection of smoothing parameters that minimize mean square error (MSE) or mean integrated square error (MISE). In this paper, we explored the optimality of selecting smoothing parameters that determine the performance of non-parametric regression models using local linear composite quantile regression. As evaluation criteria for the choice of smoothing parameter, we used mean absolute error (MAE) and mean integrated absolute error (MIAE), which have not been researched extensively due to mathematical difficulties. We proved the uniqueness of the optimal smoothing parameter based on MAE and MIAE. Furthermore, we compared the optimal smoothing parameter based on the proposed criteria (MAE and MIAE) with existing criteria (MSE and MISE). In this process, the properties of the proposed method were investigated through simulation studies in various situations.
Purpose: The balance between miscanthus production and its cost effectiveness depends greatly on its moisture content during post processing. The objective of this research was to measure the moisture content using a non-destructive and non-contact methodology for in situ applications. Methods: The moisture content of comminuted miscanthus was controlled using a closed chamber, a humidifier, a precision weigher, and a real-time monitoring software developed in this research. A CMOS sensor equipped with $50{\times}$ magnifier lens was used to capture magnified images of the conditioned materials with moisture content level from 5 to 30%. The hypothesis is that when light is incident on the comminuted particles in an inclined manner, higher moisture content results in light being reflected with a higher intensity. Results: A linear regression analysis for an initiative hypothesis based on general histogram analysis yielded insufficient correlations with low significance level (<0.31) for the determination coefficient. A significant relationship (94% confidence level) was determined at level 108 in a reverse accumulative histogram proposed based on a revised hypothesis. A linear regression model with the value at level 108 in the reverse accumulative histogram for a magnified image as the independent variable and the moisture content of comminuted miscanthus as the dependent variable was proposed as the estimation model. The calibrated linear regression model with a slope of 92.054 and an offset of 32.752 yielded 0.94 for the determination coefficient (RMSE = 0.2%). The validation test showed a significant relationship at the 74% confidence level with RMSE 6.4% (n = 36). Conclusions: To compensate the inconsistent significance between calibration and validation, an estimation model robust against various systematic interferences is necessary. The economic efficiency of miscanthus, which is a promising energy resource, can be improved by the real-time measurement of its crucial material properties.
[Purpose] This preliminary study aimed to develop a regression model to estimate the non-exercise activity thermogenesis (NEAT) of Korean adults using various easy-to-measure dependent variables. [Methods] NEAT was measured in 71 healthy adults (male n = 29; female n = 42). Statistical analysis was performed to develop a NEAT estimation regression model using the stepwise regression method. [Results] We confirmed that ageA, weightB, heart rate (HR)_averageC, weight × HR_averageD, weight × HR_sumE, systolic blood pressure (SBP) × HR_restF, fat mass ÷ height2G, gender × HR_averageH, and gender × weight × HR_sumI were important variables in various NEAT activity regression models. There was no significant difference between the measured NEAT values obtained using a metabolic gas analyzer and the predicted NEAT. [Conclusion] This preliminary study developed a regression model to estimate the NEAT in healthy Korean adults. The regression model was as follows: sitting = 1.431 - 0.013 × (A) + 0.00014 × (D) - 0.00005 × (F) + 0.006 × (H); leg jiggling = 1.102 - 0.011 × (A) + 0.013 × (B) + 0.005 × (H); standing = 1.713 - 0.013 × (A) + 0.0000017 × (I); 4.5 km/h walking = 0.864 + 0.035 × (B) + 0.0000041 × (E); 6.0 km/h walking = 4.029 - 0.024 × (C) + 0.00071 × (D); climbing up 1 stair = 1.308 - 0.016 × (A) + 0.00035 × (D) - 0.000085 × (F) - 0.098 × (G); and climbing up 2 stairs = 1.442 - 0.023 × (A) - 0.000093 × (F) - 0.121 × (G) + 0.0000624 × (E).
Communications for Statistical Applications and Methods
/
v.24
no.4
/
pp.383-396
/
2017
The model in our approach assumes that computer responses are a realization of a Gaussian processes superimposed on a regression model called a Gaussian process regression model (GPRM). Selecting a subset of variables or building a good reduced model in classical regression is an important process to identify variables influential to responses and for further analysis such as prediction or classification. One reason to select some variables in the prediction aspect is to prevent the over-fitting or under-fitting to data. The same reasoning and approach can be applicable to GPRM. However, only a few works on the variable selection in GPRM were done. In this paper, we propose a new algorithm to build a good prediction model among some GPRMs. It is a post-work of the algorithm that includes the Welch method suggested by previous researchers. The proposed algorithms select some non-zero regression coefficients (${\beta}^{\prime}s$) using forward and backward methods along with the Lasso guided approach. During this process, the fixed were covariance parameters (${\theta}^{\prime}s$) that were pre-selected by the Welch algorithm. We illustrated the superiority of our proposed models over the Welch method and non-selection models using four test functions and one real data example. Future extensions are also discussed.
The Journal of Asian Finance, Economics and Business
/
v.7
no.8
/
pp.161-173
/
2020
This study examines the nonlinear relationship between financial development and economic growth in Pakistan using the threshold regression model for the period 1980-2017. We also employed quantile regression with 0.25, 0.50, and 0.75 quantiles of conditional distribution. The quantile regression is based on minimizing of sum of squared residuals. The result indicates that economic growth responds positively to financial development when the level of financial development surpasses the threshold value of 0.151. However, when financial development lies below the threshold value (that is, 0.151), its impact on economic growth is negative. Thus, when financial development of Pakistan surpasses the threshold level, it contributes more towards economic growth since greater level of financial development contributes more to boosts economic growth. This finding reveals that economic growth reacts differently to financial development, and the relationship between financial development and economic growth is U-shaped in Pakistan. Among the other variables, physical capital, labor force, and government expenditure exert a positive effect on economic growth. Furthermore, inflation rate and trade openness have an insignificant impact on economic growth. The results of quantile regression also confirm the non-linear relationship between financial development and economic growth in Pakistan. The finding of this study suggests revamping of financial sector policies in Pakistan.
Kim, Inhea;Huh, Keun Young;Jung, Hyun Jong;Choi, Su Min;Park, Jae Hyoen
Horticultural Science & Technology
/
v.32
no.2
/
pp.241-251
/
2014
This study was carried out to develop a simple, rapid and reliable assessment model to predict cold tolerance in Pittosporum tobira, a broad-leaved evergreen commonly used in the southern region of South Korea, which can minimize the possible experimental errors appeared in a electrolyte leakage test for cold tolerance assessment. The modeling procedure comprised of regrowth test and a electrolyte leakage test on the plants exposed to low temperature treatments. The lethal temperatures estimated from the methodological combinations of a electrolyte leakage test including tissue sampling, temperature treatment for potential electrical conductivity, and statistical analysis were compared to the results of the regrowth test. The highest temperature showing the survival rate lower than 50% obtained from the regrowth test was $-10^{\circ}C$ and the lethal was $-10^{\circ}C{\sim}-5^{\circ}C$. Based on the results of the regrowth test, several methodological combinations of electrolyte leakage tests were evaluated and the electrolyte leakage lethal temperatures estimated using leaf sample tissue and freeze-killing method were closest to the regrowth lethal temperature. Evaluating statistical analysis models, linear interpolation had a higher tendency to overestimate the cold tolerance than non-linear regression. Consequently, the optimal model for cold tolerance assessment of P. tobira is composed of evaluating electrolyte leakage from leaf sample tissue applying freeze-killing method for potential electrical conductivity and predicting lethal temperature through non-linear regression analysis.
Choi, Hyun Gu;Han, Kun Yeun;Roh, Hong Sik;Park, Se Jin
KSCE Journal of Civil and Environmental Engineering Research
/
v.33
no.5
/
pp.1809-1827
/
2013
Recently we need to take various measures to prepare for extreme flood that occur due to climate change. It is important that establish flood forecasting system to prepare flood over non-structure measures. The objective of this study is to develop superior real-time flood forecasting model by comparing the Neuro-fuzzy model and the multiple linear regression model. The Neuro-fuzzy model and the multiple linear regression model are established using same input data and applied for various flood events in Nakdong basin. The results show that the Neuro-fuzzy model can carry out flood forecasting results more accurately than the multiple linear regression model. This study can contribute to the establishment of a high accuracy flood information system that secure lead time in Nakdong basin.
Sung, Jang Hyun;Baek, Hee-Jeong;Kang, Hyun-Suk;Kim, Young-Oh
Journal of Wetlands Research
/
v.14
no.3
/
pp.341-352
/
2012
The purpose of this study is to statistically project future probable rainfall and to quantitatively assess a future flood vulnerability using flood vulnerability model. To project probable rainfall under non-stationarity conditions, the parameters of General Extreme Value (GEV) distribution were estimated using the 1 yr data added to the initial 30 yr base series. We can also fit a linear regression model between time and location parameters after comparing the linear relationships between time and location, scale, and shape parameters, the probable rainfall in 2030 yr was calculated using the location parameters obtained from linear regression equation. The flood vulnerability in 2030 yr was assessed inputted the probable rainfall into flood vulnerability assessment model suggested by Jang and Kim (2009). As the result of analysis, when a 100 yr rainfall frequency occurs in 2030 yr, it was projected that vulnerability will be increased by spatial average 5 % relative to present.
Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
/
2001.06a
/
pp.1524-1524
/
2001
A previous paper(Ito et al., 2000) has described the improvement of the standard error(SEC and SEP) of the predicted soluble solids(Brix) in a melon cultivar by non-contact mode with a fiber optic probe. Then we examined the immature and mature fruits. The objective of this study was to determine if non-contact mode could improve the standard error of the predicted Brix of matured melon fruits from cross progeny as well as the contact mode(usual method). The optical absorption spectrum was measured using a NIR Systems model 6500 spectrophotometer. A commercial spectral program(NSAS ver. 3.27) was used for multiple linear regression analysis. Absorbances of 902 and in the vicinity of 877 nm were included as the independent variables in both multiple regression equations. These wavelengths are key wavelengths for non-destructive Brix determination. When the results for the contact mode and non-contact mode are compared, the latter mode improved the former standard error(SEP and RMS).
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.