• 제목/요약/키워드: Non Linear Model

검색결과 2,052건 처리시간 0.026초

Dynamic Analysis of a Geometrical Non-Linear Plate Using the Continuous-Time System Identification

  • Lim, Jae-Hoon;Choi, Yeon-Sun
    • Journal of Mechanical Science and Technology
    • /
    • 제20권11호
    • /
    • pp.1813-1822
    • /
    • 2006
  • The dynamic analysis of a plate with non-linearity due to large deformation was investigated in this study. There have been many theoretical and numerical analyses of the non-linear dynamic behavior of plates examining theoretically or numerically. The problem is how correctly an analytical model can represent the dynamic characteristics of the actual system. To address the issue, the continuous-time system identification technique was used to generate non-linear models, for stiffness and damping terms, and to explain the observed behaviors with single mode assumption after comparing experimental results with the numerical results of a linear plate model.

MOCVD공정을 이용한 GaAs박막성장의 비선형 표면반응모델에 대한 연구 (A Study on the Non-linear Surface Reaction Model for the GaAs Film Growth During MOCVD Process)

  • 임익태
    • 대한기계학회논문집B
    • /
    • 제32권3호
    • /
    • pp.181-189
    • /
    • 2008
  • GaAs film growth process from trimethylgallium(TMGa) and tertiary-butylarsine(TBAs) using a horizontal MOCVD reactor was numerically studied to explain the experimental result that the decreasing surface reaction rate as the increasing partial pressure of group III species. Using the non-linear model based on the Langmuir isotherm which considers the adsorption and desorption of molecules, film deposition over the entire reactor scale was predicted by computational fluid dynamics (CFD) with the aid of the parameters obtained from the selective area growth (SAG) technique. CFD Results using the non-linear surface reaction model with the parameters determined from the SAG experiments predicted too high film growth rate compared to the measured values at the downstream region where the temperature was decreased abruptly. The pairs of ($k_s^n$, K) from the numerical simulations was $(2.52{\times}10K^{-6}mol/m^2/s,\;1.6{\times}10^5m^3/mol)$, whereas the experimentally determined was $(3.58{\times}10^{-5}mol/m^2/s,\;6.9{\times}10^5m^3/mol)$.

DC 모터 드라이버의 비선형성을 고려한 전자식 스로틀 바디 모델 (Electronic Throttle Body Model Allowing for Non-linearity of DC Motor Driver)

  • 진성태;강종진;이우택
    • 한국자동차공학회논문집
    • /
    • 제16권1호
    • /
    • pp.71-77
    • /
    • 2008
  • This paper proposes an Electronic Throttle Body (ETB) model considering a non-linearity of DC motor driver which is integrated with a H-bridge and a gate driver. A propagation delay and reverse recovery time of switching components cause non-linear characteristic of DC motor driver. This non-linearity affects not only the amateur voltage of DC motor, but also entire behaviour and parameters of ETB. In order to analyze the behavior of ETB more accurately, this non-linear effect of DC motor driver is modeled. The developed ETB model is validated by use of the step response and ramp response experiments, and it shows relatively accurate results compared with linear DC motor driver model.

견비선형을 갖는 제어시스템에 대한 기준모델 피드백제어 및 안정성평가 (Reference Model Feedback Control and Stability Evaluation for Control System with Hard Non-linearities)

  • 정유철;이건복
    • 한국공작기계학회논문집
    • /
    • 제15권5호
    • /
    • pp.72-78
    • /
    • 2006
  • The paper proposes reference model error feedback control scheme for motion control system with hard non-linear components as like saturation and dead-zone in plant input part. Additionally, the plant has the system uncertainty effected by plant model parameter deviation and disturbance. The control algorithm uses the reference model to apply additional feedback loop with the error between reference model output and actual output effected by disturbance and non-linear components. And the stability evaluation based on Popov stability and controller design method are formulated to be performed. The effectiveness of the proposed scheme is examined by simulations. The results are proven by reasonable performances following reference model responses with good disturbance rejection performance without over-tuning of controller.

주거비용에 영향을 미치는 요소 분석: 시스템다이내믹스 계수추정을 위한 다층모형과 회귀모형의 비교 (Determinants of Housing Cost: Hierarchical Linear Model for Estimating Coefficients of a Hosing System Dynamics Model)

  • 강명구
    • 한국시스템다이내믹스연구
    • /
    • 제8권2호
    • /
    • pp.253-273
    • /
    • 2007
  • To measure the effect of school zone on housing cost, Linear Regression Model is widely used, and school zone is known as a key determinant of housing cost in Korea. However, when the Hierarchical Linear Model (HLM) is applied with the same data, school effect on housing cost becomes statistically non-significant. It is because HLM effectively separates the effect of individual housing's attributes from the group effect. In sum, the housing cost of Kangnam, where good public schools are located, is apparently is higher than that of Kangbuk. However, the school effect on housing cost (Level 2) becomes non-significant when individual housing's attributes (Level 1) are controlled with HLM.

  • PDF

Stable Tracking Control to a Non-linear Process Via Neural Network Model

  • Zhai, Yujia
    • 한국융합학회논문지
    • /
    • 제5권4호
    • /
    • pp.163-169
    • /
    • 2014
  • A stable neural network control scheme for unknown non-linear systems is developed in this paper. While the control variable is optimised to minimize the performance index, convergence of the index is guaranteed asymptotically stable by a Lyapnov control law. The optimization is achieved using a gradient descent searching algorithm and is consequently slow. A fast convergence algorithm using an adaptive learning rate is employed to speed up the convergence. Application of the stable control to a single input single output (SISO) non-linear system is simulated. The satisfactory control performance is obtained.

Effectiveness of non-linear fluid viscous dampers in seismically isolated buildings

  • Guler, Elif;Alhan, Cenk
    • Earthquakes and Structures
    • /
    • 제17권2호
    • /
    • pp.191-204
    • /
    • 2019
  • Near-field earthquake records including long-period high-amplitude velocity pulses can cause large isolation system displacements leading to buckling or rupture of isolators. In such cases, providing supplemental damping in the isolation system has been proposed as a solution. However, it is known that linear viscous dampers can reduce base displacements in case of near-field earthquakes but at the potential expense of increased superstructure response in case of far-field earthquakes. But can non-linear dampers with different levels of non-linearity offer a superior seismic performance? In order to answer this question, the effectiveness of non-linear viscous dampers in reducing isolator displacements and its effects on the superstructure response are investigated. A comparison with linear viscous dampers via time history analysis is done using a base-isolated benchmark building model under historical near-field and far-field earthquake records for a wide range of different levels of non-linearity and supplemental damping. The results show that the non-linearity level and the amount of supplemental damping play important roles in reducing base displacements effectively. Although use of non-linear supplemental dampers may cause superstructure response amplification in case of far-field earthquakes, this negative effect may be avoided or even reduced by using appropriate combinations of non-linearity level and supplemental damping.

Static or Dynamic Capital Structure Policy Behavior: Empirical Evidence from Indonesia

  • UTAMI, Elok Sri;GUMANTI, Tatang Ary;SUBROTO, Bambang;KHASANAH, Umrotul
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제8권1호
    • /
    • pp.71-79
    • /
    • 2021
  • This study investigates the capital structure policy among Indonesian public companies. Previous studies suggest that capital structure policy could follow either static or dynamic behavior. The sample data used in this study was companies in the manufacturing sector, divided into three sub-sectors: the basic and chemical industry, miscellaneous industry, and the consumer goods industry. This study uses panel data from 2010 to 2018, with the Generalized Least Square (GLS) method and compared whether the fixed effect model is better than the common effect model. The results show that the dynamic and non-linear model tests can explain the capital structure determinants than the static and linear models. The dynamic model shows that the capital structure of a certain year is influenced by the capital structure of the previous year. The findings indicate that the company performs some adjustments in its capital structure policy by referring to the previous debt ratio, which implies support to the trade-off theory (TOT). The study also shows that profitability, tangible assets, size, and age explain the variation of capital structure policy. The patterns on the dynamic and non-linear confirm that capital structure runs in a nonlinear pattern, based on the sector, company condition, and the dynamic environment.

A comparative study of the models to predict aeroelastic vibrations of circular cylinder and chimneys

  • Rahman, Saba;Jain, Arvind K.;Bharti, S.D.;Datta, T.K.
    • Wind and Structures
    • /
    • 제35권1호
    • /
    • pp.35-54
    • /
    • 2022
  • A comparative study of aeroelastic vibrations of spring-mass cylinder and chimneys, with the help of a few wake oscillator models available in the literature, is presented. The models include those proposed by Facchinetti, Farshidian and Dolatabadi method-I, Farshidian and Dolatabadi method-II, de Langre, Skop and Griffin. Besides, the linear model proposed by Simiu and Scanlan is also incorporated in the study. For chimneys, the first mode oscillation is considered, and the top displacements of the chimneys are evaluated using the considered models. The results of the analytical model are compared with those obtained from the numerical solution of the wake-oscillator coupled equations. The response behavior of the cylinder and three chimneys of different heights are studied and compared with respect to critical parametric variations. The results of the study indicate that the numerical analysis is essential to capture the effect of non-linear aeroelastic phenomena in the solutions, especially for small damping. Further, except for the models proposed by Farshidian and Dolatabadi, other models predict nearly the same responses. The non-linear model predicts a much higher response as compared to the linear model.

Model Reference Adaptive Control Using Non-Euclidean Gradient Descent

  • Lee, Sang-Heon;Robert Mahony;Kim, Il-Soo
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제4권4호
    • /
    • pp.330-340
    • /
    • 2002
  • In this Paper. a non-linear approach to a design of model reference adaptive control is presented. The approach is demonstrated by a case study of a simple single-pole and no zero, linear, discrete-time plant. The essence of the idea is to generate a full non-linear model of the plant dynamics and the parameter adaptation dynamics as a gradient descent algorithm with respect to a Riemannian metric. It is shown how a Riemannian metric can be chosen so that the modelled plant dynamics do in fact match the true plant dynamics. The performance of the proposed scheme is compared to a traditional model reference adaptive control scheme using the classical sensitivity derivatives (Euclidean gradients) for the descent algorithm.