• 제목/요약/키워드: Nominal operating cell temperature

검색결과 7건 처리시간 0.022초

실물 실험을 통한 태양광 모듈의 표면온도와 태양광 발전량과의 관계에 대한 연구 (A Study on the Relationship Between Photovoltaic Module Surface Temperature and Photovoltaic Power Using Real Experiment)

  • 조성우
    • 한국지열·수열에너지학회논문집
    • /
    • 제14권3호
    • /
    • pp.8-14
    • /
    • 2018
  • PV module power is calculated on PV module surface temperature adjustment by irradiation on the summer and autumn in NOCT(Nominal Operating Cell Temperature) conditions. The summer and autumn periods were selected because of large variation in outdoor air temperature and irradiation. This study was performed to understand relationship between PV module surface temperature and photovoltaic power using field measurement. As a results, it was determined that the amount of irradiation was proportional to the amount of photovoltaic power in the field measurement. However, it was also identified that the PV power generation decreased by increased PV module surface temperatures due to irradiation.

외기온도를 고려한 BIPV 시스템의 온도제어 (Temperature Control of BIPV system considering out air temperature)

  • 백정우;고재섭;최정식;강성준;장미금;김순영;정동화
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2009년도 추계학술대회 논문집
    • /
    • pp.371-374
    • /
    • 2009
  • This paper presents a cooling system using thermoelectron for improving the output of BIPV module. The temperature characteristic in regard to improving the output of BIPV system has rarely been studied up to now but some researchers only presented the method using a ventilator. The cooling system efficiency of BIPV module applied to a ventilator mainly depends on the weather such as wind, insolation etc. Because the cooling system of BIPV module using a ventilator is so sensitive, that is being set off by wind speed at all time but is unable to operate in the NOCT(Nominal Operating Cell Temperature) which is able to make the maximum output The paper presents the cooling system using thermoelectron so as to solve such problems. The temperature control of thermoelectron can be controlled independently in the outside environment because that is performed by micro-controller. The temperature control of thermoelectron, also, can be operated around NOCT through algorism of the temperature control. Therefore, outputs of the whole system increase and the efficiency rises. The paper demonstrates the validity of proposed method by comparing the data obtained through a experiment of the cooling method of BIPV using a ventilator and proposed thermoelectron.

  • PDF

열전소자를 이용한 BIPV 모듈의 냉각시스템 개발 (Cooling System Development of BIPV Module Using Thermoelectron)

  • 최정식;고재섭;정동화
    • 전기학회논문지
    • /
    • 제57권9호
    • /
    • pp.1555-1562
    • /
    • 2008
  • This paper presents a cooling system using thermoelectron for improving the output of BIPV module. The temperature characteristic in regard to improving the output of BIPV system has rarely been studied up to now but some researchers only presented the method using a ventilator. The cooling system efficiency of BIPV module applied to a ventilator mainly depends on the weather such as wind, insolation etc. Because the cooling system of BIPV module using a ventilator is so sensitive, that is being set off by wind speed at all time but is unable to operate in the NOCT(Nominal Operating Cell Temperature) which is able to make the maximum output. The paper presents the cooling system using thermoelectron so as to solve such problems. The temperature control of thermoelectron can be controlled independently in the outside environment because that is performed by micro-controller. The temperature control of thermoelectron, also, can be operated around NOCT through algorism of the temperature control. Therefore, outputs of the whole system increase and the efficiency rises. The paper demonstrates the validity of proposed method by comparing the data obtained through a experiment of the cooling method of BIPV using a ventilator and proposed thermoelectron.

BIPV 시스템의 효율성 향상을 위한 냉각시스템 설계 (Cooling system Design to improve efficiency of BIPV System)

  • 최정식;고재섭;김도연;정병진;최정훈;정동화
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2008년도 추계학술대회 논문집
    • /
    • pp.323-326
    • /
    • 2008
  • This paper presents a cooling system using thermoelectron for improving the output of BIPV module. The temperature characteristic in regard to improving the output of BIPV system has rarely teen studied up to now but some researchers only presented the method using a ventilator. The cooling system efficiency of BIPV module applied to a ventilator mainly depends on the weather such as wind, insolation etc. Because the cooling system of BIPV module using a ventilator is so sensitive, that is being set off by wind speed at all time but is unable to operate in the NOCT(Nominal Operating Cell Temperature) which is able to make the maximum output. The paper presents the cooling system using thermoelectron so as to solve such problems. The temperature control of thermoelectron can be controlled independently in the outside environment because that is performed by micro-controller. The temperature control of thermoelectron, also, can be operated around NOCT through algorithm of the temperature control. Therefore, outputs of the whole system increase and the efficiency rises. The paper demonstrates the validity of proposed method by comparing the data obtained through a experiment of the cooling method of BIPV using a ventilator and proposed thermoelectron.

  • PDF

Development of a Thermoelectric Cooling System for a High Efficiency BIPV Module

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of Power Electronics
    • /
    • 제10권2호
    • /
    • pp.187-193
    • /
    • 2010
  • This paper proposes a cooling system using thermoelectric elements for improving the output of building integrated photovoltaic (BIPV) modules. The temperature characteristics that improve the output of a BIPV system have rarely been studied up to now but some researchers have proposed a method using a ventilator. The efficiency of a ventilator depends mainly on the weather such as wind, irradiation etc. Because this cooling system is so sensitive to the velocity of the wind, it is unable to operate in the nominal operating cell temperature (NOCT) or the standard test condition (STC) which allow it to generate the maximum output. This paper proposes a cooling system using thermoelectric elements to solve such problems. The temperature control of thermoelectric elements can be controlled independently in an outdoor environment because it is performed by a micro-controller. In addition, it can be operated around the NOCT or the STC through an algorithm for temperature control. Therefore, the output of the system is increased and the efficiency is raised. This paper proves the validity of the proposed method by comparing the data obtained through experiments on the cooling systems of BIPV modules using a ventilator and thermoelectric elements.

다결정 실리콘 PV모듈의 하절기 표면온도 예측을 위한 알고리즘 검토 및 외부인자별 영향 평가 (Evaluation on Calculation Algorithms for Polycrystalline Silicon PV Module Surface Temperatures by Varying External Factors during the Summer Period)

  • 정동은;염규환;이찬욱;도성록
    • 대한건축학회논문집:구조계
    • /
    • 제35권8호
    • /
    • pp.177-184
    • /
    • 2019
  • Recently, electric power usages and peak loads from buildings are increasing due to higher outdoor air temperatures and/or abnormal climate during the summer period. As one of the eco-friendly measures, a renewable energy system has been received much attention. Particularly, interest on a photovoltaic (PV) system using solar energy has been rapidly increasing in a building sector due to its broad applicability. In using the PV system, one of important factors is the PV efficiency. The normal PV efficiency is determined based on the STC(Standard Test Condition) and the NOCT(Nominal Operating Cell Temperature) performance test. However, the actual PV efficiency is affected by the temperature change at the module surface. Especially, higher module temperatures generally reduce the PV efficiency, and it leads to less power generation from the PV system. Therefore, the analysis of the relation between the module temperature and PV efficiency is required to evaluate the PV performance during the summer period. This study investigates existing algorithms for calculating module surface temperatures and analyzes resultant errors with the algorithms by comparing the measured module temperatures.

BIPV 냉각시스템을 위한 자기동조 PI 온도제어 (Self Tuning PI Temperature Control for BIPV Cooling System)

  • 김도연;고재섭;최정식;정병진;백정우;정동화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1080_1081
    • /
    • 2009
  • This paper proposes a cooling system using self tuning PI controller for improving the output of BIPV module. The temperature characteristics in regard to improving the output of BIPV system has rarely been studied up to now but some researchers only presented the method using a ventilator. The cooling system efficiency of BIPV module applied to a ventilator mainly depends on the weather such as wind and insolation etc. Because the cooling system of BIPV module using a ventilator is so sensitive, that is being set off by wind speed at all time but is unable to operate in the nominal operating cell temperature(NOCT) which is able to make the maximum output. The paper proposes the cooling system using thermoelectron by self tuning PI controller so as to solve such problems. The thermoelectron control of self tuning PI controller can be controlled independently in the outside environment because that is performed by micro-controller. The temperature control of thermoelectron, also, can be operated around NOCT through algorism of the temperature control. Therefore, outputs of the whole system increase and the efficiency rises. The paper demonstrates the validity of proposed method by comparing the data obtained through a experiment of the cooling method of BIPV using a ventilator and proposed thermoelectron

  • PDF