• Title/Summary/Keyword: Nominal Point

Search Result 105, Processing Time 0.022 seconds

How Desirable is the Medium? Effect of Point Accumulation Scheme on Consumer Loyalty Toward Reward Program

  • Eujin Park
    • Asia Marketing Journal
    • /
    • v.24 no.4
    • /
    • pp.190-205
    • /
    • 2023
  • An accruable point scenario study was applied to examine the effect of the point-accumulation trend (diminishing vs. increasing) and the nominal value (small vs. large) of a medium for repeated consumption on program loyalty. The results showed that both factors affect consumer loyalty toward a reward program. Consumers who received a medium with an increasing accumulation trend and a large nominal value perceived a reward to be more valuable than those who received a diminishing trend and a small nominal value. The results confirmed that a large nominal value or an increasing accumulation trend increased the perception of reward and program loyalty. However, when the desirability of the medium was controlled, the effect of trend was reduced to almost negligible whereas that of the nominal value remained the same. These findings suggest how consumer perceptions of loyalty programs can be practically managed through point accumulation processes.

Off-Design Performance Prediction of an Axial Flow Compressor Stage Using Simple Loss Correlations (간단한 손실모델을 이용한 단단축류압축기 탈설계점 성능예측)

  • 김병남;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3357-3368
    • /
    • 1994
  • Total pressure losses required to calculate the total-to-total efficiency are estimated by integrating empirical loss coefficients of four loss mechanisms along the mean-line of blades as follows; blade profile loss, secondary flow loss, end wall loss and tip clearance loss. The off-design points are obtained on the basis of Howell's off-design performance of a compressor cascade. Also, inlet-outlet air angles and camber angle are obtained from semi-empirical relations of transonic airfoils' minimum loss incidence and deviation angles. And nominal point is replaced by the design point. It is concluded that relatively simple loss models and Howell's off-design data permit us to calculate the off-design performance with satisfactory accuracy. And this method can be easily extended for off-design performance prediction of multi-stage compressors.

Local Minimum Problem of the ILS Method for Localizing the Nodes in the Wireless Sensor Network and the Clue (무선센서네트워크에서 노드의 위치추정을 위한 반복최소자승법의 지역최소 문제점 및 이에 대한 해결책)

  • Cho, Seong-Yun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.10
    • /
    • pp.1059-1066
    • /
    • 2011
  • This paper makes a close inquiry into ill-conditioning that may be occurred in wireless localization of the sensor nodes based on network signals in the wireless sensor network and provides the clue for solving the problem. In order to estimate the location of a node based on the range information calculated using the signal propagation time, LS (Least Squares) method is usually used. The LS method estimates the solution that makes the squared estimation error minimal. When a nonlinear function is used for the wireless localization, ILS (Iterative Least Squares) method is used. The ILS method process the LS method iteratively after linearizing the nonlinear function at the initial nominal point. This method, however, has a problem that the final solution may converge into a LM (Local Minimum) instead of a GM (Global Minimum) according to the deployment of the fixed nodes and the initial nominal point. The conditions that cause the problem are explained and an adaptive method is presented to solve it, in this paper. It can be expected that the stable location solution can be provided in implementation of the wireless localization methods based on the results of this paper.

Input design to reduce residual vibration for a nonlinear time-varying system (비선형 시변계의 잔류진동감소를 위한 입력 설계)

  • Pang, Jeong-Hun;Park, Youn-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.7
    • /
    • pp.1106-1115
    • /
    • 1997
  • A method of obtaining a control input to reduce residual vibration was developed for nonlinear time-varying systems moving along pre-determined two dimensional paths. First, the nonlinear system equation was solved with nominal input then linearized by nominal response which is defined at equilibrium point. Next an additional input can be obtained by solving the linearized equation that should satisfied the required boundary conditions. Residual vibration reduction was experimentally verified by applying the control input, which is sum of nominal and additional input, to a moving pendulum whose length is varying time.

MR rotary brake development with permanent magnet (자기 유변 유체와 영구 자석을 이용한 회전 엑츄에이터의 개발)

  • 권순우;박영진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.183-186
    • /
    • 1997
  • This paper presents the new MR rotary brake with a permanent magnet, based on the shear operating mode. Due to the permanent magnet, the MR rotary brake can give the nominal resistance to the external disturbance and give the fail safe capacity to the system even when the power supply is accidentally cut off. As we apply the positive or negative current to the electric magnet coil, the resistance torque of the MR rotary brake can be reduced to the value less than the nominal resistance or increased up to the magnetic saturation point.

  • PDF

Estimation of Contact Stress Distribution Factor in Bolt Joint with variable Fastening torque (체결력에 따른 볼트 결합부의 접촉응력분포계수 평가)

  • 김종규
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.2
    • /
    • pp.73-79
    • /
    • 1999
  • Most of mechanical structures are combined of substructures such as beams and/or plates. There are few systems with unibody structures but are many systems with united body structures. Generally the dynamic a nalysis of whole structures is performed under alternation load. In the structure design, the analysis of each bolted joint is more important than others for zero severity. This paper presents the analysis method of contact stress distribution factor in the bolted joint with variable fastening torque on joints in the structure. At first, a static vibration test was performed to find out a nominal stress of bolt jointed plates from the relationship between natural frequency and nominal stress. Then a contact stress was computed at contact point between bolt and plate in the structure. It is believed that the proposed method has promisiong implications for safer design with index of contact stress distribution factor and has merits for cost-down and saving time at the beginning of vehicle development.

  • PDF

Nominal Wage Rigidity and Employment Volatility (명목임금의 경직성과 고용변동성)

  • Hwang, Sanghyun;Lee, Jin-Young
    • Asia-Pacific Journal of Business
    • /
    • v.10 no.4
    • /
    • pp.137-151
    • /
    • 2019
  • Using Korean Labor and Income Panel Study data, this paper estimates nominal wage rigidity in Korea by industry from 2005 to 2017 and evaluates the level of inefficiency of Korean labor market. And, after estimating employment volatility by industry using the Labor Force Survey at Establishments data for Korea, we combine the nominal wage rigidity and the employment volatility estimates and analyze the effect of nominal wage rigidity on employment volatility in Korea from 2011 to 2017. If the level of wage rigidity is high, it may be hard for the labor market to be in the equilibrium, and therefore, the market may have inefficiency. We find that the inefficiency of the labor market in Korea have increased from 2005 to 2017 and the industry of accommodation and food service activities has the highest level of inefficiency over the period. We also find that one-percent-point increase in wage rigidity increases employment volatility by 2.3-2.9 percent and the positive effect is bigger for workers with part-time and temporary jobs. The result implies that firms may adjust their labor costs by changing the number of casual workers, rather than permanent workers, when the labor market suffers from a high level of wage rigidity.

EXPLOSION HAZARDS IN TANKS OF HIGH FLASH POINT LIQUIDS

  • Zalosh, Robert
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.203-210
    • /
    • 1997
  • Reports of explosions in cargo and storage tanks of high flash point liquids such as residual fuel oil, asphalt, and oily waste water have shown that these explosions have occurred even when the liquid temperatures are well below the liquid nominal flash point. The reasons for these seemingly paradoxical explosions are reviewed and results of recent laboratory tests are presented to better define the conditions leading to flammable vapor atmospheres in these tanks. The potential effectiveness of various prevention measures are discussed including inerting, monitoring tank vapor concentrations, and periodic cleaning of condensation and deposits on the tank walls and roof.

  • PDF

An Evaluation of the Second-order Approximation Method for Engineering Optimization (최적설계시 이차근사법의 수치성능 평가에 관한 연구)

  • 박영선;박경진;이완익
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.2
    • /
    • pp.236-247
    • /
    • 1992
  • Optimization has been developed to minimize the cost function while satisfying constraints. Nonlinear Programming method is used as a tool for the optimization. Usually, cost and constraint function calculations are required in the engineering applications, but those calculations are extremely expensive. Especially, the function and sensitivity analyses cause a bottleneck in structural optimization which utilizes the Finite Element Method. Also, when the functions are quite noisy, the informations do not carry out proper role in the optimization process. An algorithm called "Second-order Approximation Method" has been proposed to overcome the difficulties recently. The cost and constraint functions are approximated by the second-order Taylor series expansion on a nominal points in the algorithm. An optimal design problem is defined with the approximated functions and the approximated problem is solved by a nonlinear programming numerical algorithm. The solution is included in a candidate point set which is evaluated for a new nominal point. Since the functions are approximated only by the function values, sensitivity informations are not needed. One-dimensional line search is unnecessary due to the fact that the nonlinear algorithm handles the approximated functions. In this research, the method is analyzed and the performance is evaluated. Several mathematical problems are created and some standard engineering problems are selected for the evaluation. Through numerical results, applicabilities of the algorithm to large scale and complex problems are presented.presented.

Experimental behavior assessment of short, randomly-oriented glass-fiber composite pipes

  • Salar Rasti;Hossein Showkati;Borhan Madroumi Aghbashi;Soheil Nejati Ozani;Tadeh Zirakian
    • Steel and Composite Structures
    • /
    • v.47 no.6
    • /
    • pp.679-691
    • /
    • 2023
  • The application of short, fiber-reinforced polymer composite pipes has been increasing rapidly. A comprehensive review of the prior research reveals that the majority of the previously-reported studies have been conducted on the filament-wound composite pipes, and fewer studies have been reported on the mechanical behavior of short, randomly-oriented fiber composite pipes. On this basis, the main objective of this research endeavor is to investigate the mechanical behavior and failure modes of short, randomly-oriented glass-fiber composite pipes under three-point bending tests. To this end, an experimental study is performed in order to explore the load-bearing capacity, failure mechanism, and deformation performance of such pipes. Fourteen properly-instrumented composite pipe specimens with different diameters, thicknesses, lengths, and nominal pressures have been tested and also simulated using the finite element approach for verification purposes. This study demonstrates the effectiveness of the diameter-to-thickness ratio, length-to-diameter ratio, and nominal pressure on the mechanical behavior and deformation performance of short, randomly-oriented glass-fiber composite pipes.