• Title/Summary/Keyword: Nominal Moment

Search Result 80, Processing Time 0.029 seconds

Cyclic Loading Test for TSC Beam - PSRC Column Connections (TSC 합성보 - PSRC 합성기둥 접합부에 대한 주기하중 실험)

  • Hwang, Hyeon Jong;Eom, Tae Sung;Park, Hong Gun;Lee, Chang Nam;Kim, Hyoung Seop
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.6
    • /
    • pp.601-612
    • /
    • 2013
  • In the present study, details of the TSC beam-to-PSRC column connection for low and middle seismic zones were developed. For ease construction, the top and bottom flanges of the steel section of the TSC beam were discontinuous at the joint face on purpose, while the web passes through the joint. Thus, tensile resistance of the top and bottom flanges is not considered in the calculation of nominal strength of the connection. Cyclic loading tests on two interior connections and an exterior connection were performed to verify the seismic performance. The test parameter for two interior connections was the depth of the TSC beams: 600 and 700 mm including the slab depth. The test results showed that the nominal strength of the connections predicted by KBC 2009 correlated well with the test results. The connection specimens exhibited relatively good deformation and energy dissipation capacities, greater than the requirements for the ordinary and intermediate moment frames. Ultimately, the connection specimens were failed at the story drift ratios of 3.0 to 4.0 % due to local buckling and tensile fracture of the web of the TSC beam passing through the joint. By modifying the existing provisions of ASCE, the joint shear strength of the TSC beam-PSRC column connection was evaluated.

Seismic Behavior of High-Strength Reinforced Concrete Bridge Columns (고강도 철근콘크리트 교각의 내진 거동)

  • Hwang Sun-Kyoung;Lee Chin-Ok;Ryu Hyo-Jin;Yun Hyun-Do;Lim Byung-Hoon
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.505-511
    • /
    • 2005
  • This experimental investigation was conducted to examine the seismic performance of reinforced concrete bridge columns. The columns were subjected to a constant axial load and a cyclic horizontal load-inducing reversed bending moment. The variables studied in this research were the volumetric ratios of transverse reinforcement (ps=0.96, 1.44 percent) and axial load ratios (P/Po=0.05, 0.1, 0.2) and concrete strengths (35, 60MPa). Test results showed that bridge columns with $44\%$ higher amounts of transverse reinforcement than that required by seismic provisions of ACI 318-02 showed ductile behavior. For bridge columns with axial load ratio(P/Po) less than 0.2, the ratio of $M_{max}\;over\;M_{ACI}$, nominal moment capacity predicted by ACI 318-02 provisions, was consistently greater than 1 with approximately a $20\%$ margin of safety.

Safety Assessment and Rating of Road Bridges against the Crossing of Heavy Military Tanks (군용전차(軍用戰車) 통과(通過)에 대한 도로교량(道路橋梁)의 안전도분석(安全度分析) 및 내하력판정(耐荷力判定))

  • Cho, Hyo Nam;Han, Bong Koo;Chun, Chai Myung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.1
    • /
    • pp.61-68
    • /
    • 1988
  • This study is intended to propose an approach to reliability-based safety evaluation as well as LRFR(Load and Resisitance Factor Rating) type capacity classification of military or civilian bridges based on the limit state models which are delived by incorporating all the uncertainties of resistance and load random variables including deterioration, and are used in a practical AFOSM (Advanced First Order Second Moment) method. The proposed methods for the assement of safety and load carrying capacity are applied for the evaluation of rating and classifications of several practical bridges against the crossing of military vehicles. Based on the observation of the numerical results, it can be concluded that the current NATO classification method which is based on the traditionl allowable stress concept can not provide real load carrying capacity but results in nominal classification, and therefore the reliability-based safety evaluation and LRFR-classification method or the corresponding rational allowable stress method proposed in this paper may have to be introduced into the classification practice.

  • PDF

Development of Hybrid OCB Beam for the Long-span Building Structures (장경간 건축구조를 위한 하이브리드 OCB보의 개발)

  • Lee, Doo-Sung;Kim, Sang-Yeon;Kim, Tae-Kyun
    • Land and Housing Review
    • /
    • v.6 no.3
    • /
    • pp.129-138
    • /
    • 2015
  • The building structure in Korea is planned to maximize the use of space in recent. The hybrid OCB(Optimized Composite Beam) beam is developed to take advantage of using the space. The OCB beam is composed of the steel H-beam section reinforced by open strands in negative moment zone and the pretensioned PSC concrete section in positive zone. Flexural behavior of typical architectural hybrid OCB beam section was investigated by F.E.M. The 15m, 20m, 30m OCB models were tested on nonlinear material and geometry under static loading system. Following results are obtained from the analysis; 1)The OCB beam develop initial flexural cracking over full service loading. 2)Overall deflections of OCB beam under the service loads are less than those of the allowable limits in KCI Code(2012). 3)The ultimate load capacity get over the nominal strength of the OCB main section. The OCB beam is verified of structural reliability from the finite element analysis.

A Study on the Structural Reliability (구조물(構造物)의 신뢰성(信賴性)에 관한 소고(小考) -원형단면의 인장재를 중심으로-)

  • Son, Seung Yo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.2
    • /
    • pp.51-57
    • /
    • 1985
  • In the design of civil engineering structures, the designers are invariably faced to the uncertainties and the randomness of the design parameters such as material properties and loads. Even when the structures are built, the actual geometries of the structures are also subject to their random variations from their nominal design values. Thus, the reliability of a structure in terms of these uncertainties and variations becomes a matter of great concern to the structural designers. This study employs the First Order Second Moment Method to evluate numerically the reliability of a simple tension member and discusses the influence on the final failure probability of that structure due to: 1) use of equivalent normal distribution in place of non-normal distribution, 2) linearization of non linear limit state equation. A discussion is also made on the necessity of fundamental studies on the distrubution characteristics of the strength of locally produced construction materials and those of the loads frequently encountered in the structural design.

  • PDF

Flexural tests on two-span unbonded post-tensioned lightweight concrete beams

  • Yang, Keun-Hyeok;Lee, Kyung-Ho;Yoon, Hyun-Sub
    • Structural Engineering and Mechanics
    • /
    • v.72 no.5
    • /
    • pp.631-642
    • /
    • 2019
  • The objective of the present study is to examine the flexural behavior of two-span post-tensioned lightweight aggregate concrete (LWAC) beams using unbonded tendons and the reliability of the design provisions of ACI 318-14 for such beams. The parameters investigated were the effective prestress and loading type, including the symmetrical top one-point, two third-point, and analogous uniform loading systems. The unbonded prestressing three-wire strands were arranged with a harped profile of variable eccentricity. The total length of the beam, measured between both strand anchorages, was 11000 mm. The test results were compared with those compiled from simply supported LWAC one-way members, wherever possible. The ultimate load capacity of the present beam specimens was evaluated by the collapse mechanism of the plasticity theorem and the nominal section moment strength calculated following the provision of the ACI 318-14. The test results showed that the two-span post-tensioned LWAC beams had lower stress increase (Δfps) in the unbonded tendons than the simply supported LWAC beams with a similar reinforcement index. The effect of the loading type on Δfps and displacement ductility was less significant for two-span beams than for the comparable simply supported beams. The design equations for Δfps and Δfps proposed by ACI 318-14 and Harajli are conservative for the present two-span post-tensioned LWAC beams, although the safety decreases for the two-span beam, compared to the ratios between experiments and predictions obtained from simply supported beams.

Fail safe and restructurable flight control system

  • Kanai, K.;Ochi, Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.21-29
    • /
    • 1994
  • This paper presents a method to accommodate failures that affect aircraft dynamical characteristics, especially control surface jams on a large transport aircraft. The approach is to use the slow effectors, such as the stabilators or engines, in the feedforward manner. The simulation results indicate the performance of the RFCS. In some cases of control surface jam, the aircraft cannot recover without using the stabilators. Although the inputs to the slow effectors are determined using the nominal parameters, the effects of parameter change can be compensated by adjusting the control parameters for the fast surfaces. In the case of rudder jam, if the remaining control surfaces and the differential thrust cancel the moments produced by the stuck rudder, using the engine control improves time responses and reduces deflection angles of the control surfaces. If not, however, the aircraft starts a large rolling motion following a yawing motion. In that case, the stabilators should be used to damp the induced rolliig motion, instead of trying to directly cancel the moments caused by the stuck rudder. Unfortunately, the proposed control law for the stabilators does not give such inputs, because it does not take into account the dynamical effects which stuck surfaces have on the aircraft motions. However, we have shown through simulation that the aircraft can be recovered by giving the stabilators the control inputs that counteract the induced rolling moment. Besides, the method has also been shown through simulation to be effective in maintaining control during a situation similar to an actual accident. Finally let us mention a problem with the RFCS. As stated above, we have not established a method to select a trim point which call be reached as easily as possible using the remaining control effectors. In fact, recovery performance considerably depends on the trim states. As pointed out in Ref. 11, finding the best trim point for impaired aircraft will be one of the most difficult questions in RFCS design.

  • PDF

Optimization for Precast Prestressed Wide-U Beams with the Least Depth (최소깊이 프리캐스트 프리스트레스트 U형보의 최적화)

  • Yul Sung-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.1 s.79
    • /
    • pp.18-26
    • /
    • 2004
  • The cost of underground work is a dominant factor to determine the total construction fee. It is generally 2 ${\~}$ 2.5 times higher than that of above ground for building with the same height. 'A new precast prestressed framing plan for underground parking building' was suggested with the beam of the least depth - U-type beams. The depth of regular rectangular reinforced concrete beam which is currently used in the underground parking of apartments could be reduced up to 12 ${\~}$ 34cm/story due to the development of a U-beams from the optimum process. Two full scale prototype U-beams were tested in this study. It was found that the Wide U-beams in the test showed higher strength than calculated nominal and design, however need to provide temporary supports to meet the flexural moment of construction load at the simply supported state before the lopping concrete hardens.

Load Resistance Mechanism and Behavior Characteristics of MRS Continuous Joints (MRS 연속단 접합부의 구조상세에 따른 하중저항 메커니즘과 거동 특성)

  • Oh, Young-Hun;Moon, Jeong-Ho;Im, Ju-Hyeuk;Choi, Dong-Sup;Lee, Kang-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.2
    • /
    • pp.247-254
    • /
    • 2010
  • The purpose of study is to investigate the load resistance mechanism of MRS continuous joint designed with different details. Six full-scale specimens, which could simulate the negative moment region of the 8 m long MRS system, were prepared to evaluate the structural performance of the continuous joint. According to the experimental results, all specimens which include the specimen with dapped ends designed by loads at the construction stage were failed in a flexural manner and showed the load carrying capacity over the nominal flexural strength. Therefore it is recommended that the dapped ends for MRS continuous joints be designed for the loads of the construction stage. And the shear key, which was installed on the top of rib for MRS slab, helps the enhancement of strength and especially deformation capacity.

Seismic Performance and Flexural Over-strength of Circular RC Column (원형 RC 기둥의 내진성능과 휨 초과강도)

  • Ko, Seong-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.5
    • /
    • pp.49-58
    • /
    • 2013
  • Eight small scale circular reinforced concrete columns were tested under cyclic lateral load with constant axial load. Test specimens were designed with 4.5 aspect ratio. The selected test variables are longitudinal steel ratio, transverse steel ratio, yielding strength of longitudinal steel and axial load ratio. The test results of columns with different longitudinal steel ratio, transverse steel ratio and axial load ratio showed different seismic performance such as equivalent damping ratio, residual displacement and effective stiffness. It was found that the column with low strength of longitudinal steel showed significantly reduced seismic performance, especially for equivalent damping ratio and residual displacement. The regulation of flexural over-strength is adopted by Korea Bridge Design Specifications (Limited state design, 2012). The test results are compared with nominal strength, result of nonlinear moment-curvature analysis and the design specifications such as AASHTO LRFD and Korea Bridge Design Specifications (Limited state design).