• Title/Summary/Keyword: Nominal Model

Search Result 471, Processing Time 0.035 seconds

Fault Detection and Isolation System for DC motor driven Centrifugal Pump-Pipe Systems: Parity Relation Approach (직류전동기 구동 원심펌프-파이프 계통의 고장검출진단시스템: 등가관계 접근법)

  • Park, Tae-Geon;Ryu, Ji-Su;Lee, Kee-Sang
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.819-821
    • /
    • 1998
  • This paper deals with a method or a residual generation for fault isolation in a centrifugal pump with a water circulation system, driven by a speed controlled dc motor. It is based on parity relations derived from the moving-average model of the system and is used to identify sensor faults and two possible brush and impeller faults, where the former is dealt with additive faults, while the latter characterized as discrepancies between the nominal and actual plant parameters of the system is modelled by multiplicative faults. We will represent the propagation of this uncertainty to the model matrices by the approximate handling of partial derivatives of polynomials. With multiplicative faults, the transformation matrix implemented in the residual generator are calculated on-line. The simulation studies demonstrate that small changes of the system can be detected and diagnosed by using the method.

  • PDF

Performance bounds of continuous-time optimal FIR filter under modeling uncertainty (모델 불확실성에 대한 연속형 최적 FIR 필터의 성능한계)

  • Yoo, Kyung-Sang;Gwon, O-Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.1 no.1
    • /
    • pp.20-24
    • /
    • 1995
  • In this paper we analyze the performance bounds of the optimal FIR filter in continuous time systems with modeling uncertainty. The performance bounds are presented by the estimation error convariance and they are here expressed by the upper bounds of the difference of the estimation error covariance between the real and nominal values in case of the system with model uncertainties whose upper bounds are imperfrctly known a priori. The performance bounds of the optimal FIR filter are compared with those of the Kalman filter via a numerical example applied to the estimation of the motion of an aircraft carrier at sea, which shows the former has better performances than the latter.

  • PDF

Fuzzy Controller for Nonlinear Systems Using Pole Placement in a Specified Disk (지정된 디스크 영역 내 극 배치법을 이용한 비선형 시스템 제어를 위한 퍼지 제어기)

  • Lee, Sang-Jun;Lee, Nam-Su;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2302-2304
    • /
    • 2000
  • This paper addresses a fuzzy controller for nonlinear systems control using a pole placement in a specified disk. In the method, we linearize a nonlinear plant about nominal operating points and represent it using TS fuzzy model and formulate the controller rules. A feedback control law for a local model is determined using a pole placement in a specified disk(${\alpha}$:center ${\gamma}$:radius} region so that the closed loop system is stable. A nonlinear system can be controlled by combining fuzzy controller with a pole placement scheme which can be used to modify the transient response such as damping ratio and overshoot. A stability of overall fuzzy control system is guaranteed in the Lyapunov sense. Finally, it is shown that the proposed method is feasible through a computer simulation.

  • PDF

Online Learning Control for Network-induced Time Delay Systems using Reset Control and Probabilistic Prediction Method (네트워크 기반 시간지연 시스템을 위한 리세트 제어 및 확률론적 예측기법을 이용한 온라인 학습제어시스템)

  • Cho, Hyun-Cheol;Sim, Kwang-Yeul;Lee, Kwon-Soon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.9
    • /
    • pp.929-938
    • /
    • 2009
  • This paper presents a novel control methodology for communication network based nonlinear systems with time delay nature. We construct a nominal nonlinear control law for representing a linear model and a reset control system which is aimed for corrective control strategy to compensate system error due to uncertain time delay through wireless communication network. Next, online neural control approach is proposed for overcoming nonstationary statistical nature in the network topology. Additionally, DBN (Dynamic Bayesian Network) technique is accomplished for modeling of its dynamics in terms of casuality, which is then utilized for estimating prediction of system output. We evaluate superiority and reliability of the proposed control approach through numerical simulation example in which a nonlinear inverted pendulum model is employed as a networked control system.

DSM GENERATION FROM IKONOS STEREO IMAGERY

  • Rau, Jiann-Yeou;Chen, Liang-Chien;Chang, Chih-Li
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.57-59
    • /
    • 2003
  • Digital surface model generation from IKONOS stereo imagery is a new challenge in photogrammetric community, especially when the satellite company does not provide the raw data as well as their ancillary ephemeris data. In this paper we utilized an estimated relief displacement azimuth and the nominal collection elevation data included in the metadata file to correct the relief displacement of GCPs, together with a linear transformation for geometric modeling of IKONOS imagery. Space intersection is performed by the trigonometric intersection assuming a parallel projection of IKONOS imagery due to its small FOV and frame size. In the experiment, less than 2-meters of RMSE in orbit modeling is achieved denoting the potential positioning accuracy of the IKONOS stereo imagery.

  • PDF

Modeling sulfuric acid induced swell in carbonate clays using artificial neural networks

  • Sivapullaiah, P.V.;Guru Prasad, B.;Allam, M.M.
    • Geomechanics and Engineering
    • /
    • v.1 no.4
    • /
    • pp.307-321
    • /
    • 2009
  • The paper employs a feed forward neural network with back-propagation algorithm for modeling time dependent swell in clays containing carbonate in the presence of sulfuric acid. The oedometer swell percent is estimated at a nominal surcharge pressure of 6.25 kPa to develop 612 data sets for modeling. The input parameters used in the network include time, sulfuric acid concentration, carbonate percentage, and liquid limit. Among the total data sets, 280 (46%) were assigned to training, 175 (29%) for testing and the remaining 157 data sets (25%) were relegated to cross validation. The network was programmed to process this information and predict the percent swell at any time, knowing the variable involved. The study demonstrates that it is possible to develop a general BPNN model that can predict time dependent swell with relatively high accuracy with observed data ($R^2$=0.9986). The obtained results are also compared with generated non-linear regression model.

The Needs Analysis of Software Safety Education Program for Common Competency Area

  • Kang, Ji-Woon;Do, Sung-Ryong
    • Journal of Information Processing Systems
    • /
    • v.17 no.5
    • /
    • pp.960-971
    • /
    • 2021
  • As the era of the 4th Industrial Revolution enters, the importance of software safety is increasing, but related systematic educational curriculum and trained professional engineers are insufficient. The purpose of this research is to propose the high priority elements for the software safety education program through needs analysis. For this purpose, 74 candidate elements of software safety education program were derived through contents analysis of literature and nominal group technique (NGT) process with five software safety professionals from various industries in South Korea. Targeting potential education participants including industrial workers and students, an on-line survey was conducted to measure the current and required level of each element. Using descriptive statistics, t-test, Borich needs assessment and Locus for focus model, 16 high priority elements were derived for software safety education program. Based on the results, suggestions were made to develop a more effective education program for software safety education.

Robust Adaptive Power Control against Electric Load Changes in Islanded Micro-grid (독립형 마이크로그리드의 부하 변동에 대한 강인 적응형 전력 제어기법)

  • Ha, Yang;Cho, Hyun Cheol
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.67 no.4
    • /
    • pp.175-182
    • /
    • 2018
  • In recent years, micro-grid has been widely focused on the fields of renewal energy systems. This paper proposes a novel robust power converter control against arbitrary electric load changes for islanded micro-grid topology. First, we provide a state-space representation of our micro-grid model including power converter and electric load circuit. And then a state feedback control method is applied to construct a nominal control framework. Next, we propose a robust adaptive control law to enhance a control performance against unexpected load perturbation. In addition, we analytically investigate a passivity property for the micro-grid model and carry out computer simulation to demonstrate superiority and reliability of the proposed control methodology.

Robust Hcontrol applied on a fixed wing unmanned aerial vehicle

  • Uyulan, Caglar;Yavuz, Mustafa Tolga
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.5
    • /
    • pp.371-389
    • /
    • 2019
  • The implementation of a robust $H_{\infty}$ Control, which is numerically efficient for uncertain nonlinear dynamics, on longitudinal and lateral autopilots is realised for a quarter scale Piper J3-Cub model accepted as an unmanned aerial vehicle (UAV) under the condition of sensor noise and disturbance effects. The stability and control coefficients of the UAV are evaluated through XFLR5 software, which utilises a vortex lattice method at a predefined flight condition. After that, the longitudinal trim point is computed, and the linearization process is performed at this trim point. The "${\mu}$-Synthesis"-based robust $H_{\infty}$ control algorithm for roll, pitch and yaw displacement autopilots are developed for both longitudinal and lateral linearised nonlinear dynamics. Controller performances, closed-loop frequency responses, nominal and perturbed system responses are obtained under the conditions of disturbance and sensor noise. The simulation results indicate that the proposed control scheme achieves robust performance and guarantees stability under exogenous disturbance and measurement noise effects and model uncertainty.

Trajectory Control of a Hydraulic Excavator using Disturbance Observer in $H_{\infty}$ Framework

  • Choi, Jong-Hwan;Kim, Seung-Soo;Cho, Hyun-Cheol;Ahn, Tae-Kyu;Duoc, Buiquang;Yang, Soon-Yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.552-557
    • /
    • 2004
  • This paper presents a disturbance observer based on an $H_{\infty}$ controller synthesis for the trajectory control of a hydraulic excavator. Compared to conventional robot manipulators driven by electrical motors, the hydraulic excavator has more nonlinear and coupled dynamics. In particular, the interactions between an excavation tool and the materials being excavated are unstructured and complex. In addition, its operating modes depend on working conditions, which make it difficult to not only derive the exact mathematical model but also design a controller systematically. In this study, the approximated linear model obtained through off-line system identification is used as nominal plant model for a disturbance observer. A disturbance observer based tracking controller which considers the effect of disturbance and model uncertainty is synthesized in $H_{\infty}$ frameworks. Simulation results are used to demonstrate the applicability of the proposed control scheme.

  • PDF