• Title/Summary/Keyword: Noisy Speech

Search Result 395, Processing Time 0.027 seconds

Performance Enhancement of Speaker Identification in Noisy Environments by Optimization Membership Function Based on Particle Swarm (Particle Swarm 기반 최적화 멤버쉽 함수에 의한 잡음 환경에서의 화자인식 성능향상)

  • Min, So-Hee;Song, Min-Gyu;Na, Seung-You;Kim, Jin-Young
    • Speech Sciences
    • /
    • v.14 no.2
    • /
    • pp.105-114
    • /
    • 2007
  • The performance of speaker identifier is severely degraded in noisy environments. A study suggested the concept of observation membership for enhancing performances of speaker identifier with noisy speech [1]. The method scaled observation probabilities of input speech by observation identification values decided by SNR. In the paper [1], the authors suggested heuristic parameter values for membership function. In this paper we attempt to apply particle swarm optimization (PSO) for obtaining the optimal parameters for speaker identification in noisy environments. With the speaker identification experiments using the ETRI database we prove that the optimization approach can yield better performance than using only the original membership function.

  • PDF

Voice Activity Detection Algorithm Using Speech Periodicity and QSNR in Noisy Environment (음성의 주기성과 QSNR을 이용한 잡음환경에서의 음성검출 알고리즘)

  • Jeong, Ju-Hyun;Song, Hwa-Jeon;Kim, Hyung-Soon
    • Proceedings of the KSPS conference
    • /
    • 2005.11a
    • /
    • pp.59-62
    • /
    • 2005
  • Voice activity detection (VAD) is important in many areas of speech processing technology. Speech/nonspeech discrimination in noisy environments is a difficult task because the feature parameters used for the VAD are sensitive to the surrounding environments. Thus the VAD performance is severely degraded at low signal-to-noise ratios (SNRs). In this paper, a new VAD algorithm is proposed based on the degree of voicing and Quantile SNR (QSNR). These two feature parameters are more robust than other features such as energy and spectral entropy in noisy environments. The effectiveness of proposed algorithm is evaluated under the diverse noisy environments in the Aurora2 DB. According to out experiment, the proposed VAD outperforms the ETSI Advanced Frontend VAD.

  • PDF

Spectral Pattern Based Robust Speech Endpoint Detection in Noisy Environments (스펙트럼 패턴 기반의 잡음 환경에 강인한 음성의 끝점 검출 기법)

  • Park, Jin-Soo;Lee, Yoon-Jae;Lee, In-Ho;Ko, Han-Seok
    • Phonetics and Speech Sciences
    • /
    • v.1 no.4
    • /
    • pp.111-117
    • /
    • 2009
  • In this paper, a new speech endpoint detector in noisy environment is proposed. According to the previous research, the energy feature in the speech region is easily distinguished from that in the speech absent region. In conventional method, the endpoint can be found by applying the edge detection filter that finds the abrupt changing point in feature domain. However, since the frame energy feature is unstable in noisy environment, the accurate edge detection is not possible. Therefore, in this paper, the novel feature extraction method based on spectrum envelop pattern is proposed. Then, the edge detection filter is applied to the proposed feature for detection of the endpoint. The experiments are performed in the car noise environment and a substantial improvement was obtained over the conventional method.

  • PDF

Syllable-Type-Based Phoneme Weighting Techniques for Listening Intelligibility in Noisy Environments (소음 환경에서의 명료한 청취를 위한 음절형태 기반 음소 가중 기술)

  • Lee, Young Ho;Joo, Jong Han;Choi, Seung Ho
    • Phonetics and Speech Sciences
    • /
    • v.6 no.3
    • /
    • pp.165-169
    • /
    • 2014
  • Intelligibility of speech transmitted to listeners can significantly be degraded in noisy environments such as in auditorium and in train station due to ambient noises. Noise-masked speech signal is hard to be recognized by listeners. Among the conventional methods to improve speech intelligibility, consonant-vowel intensity ratio (CVR) approach reinforces the powers of overall consonants. However, excessively reinforced consonant is not helpful in recognition. Furthermore, only some of consonants are improved by the CVR approach. In this paper, we propose the corrective weighting (CW) approach that reinforces the powers of consonants according to syllable-type such as consonant-vowel-consonant (CVC), consonant-vowel (CV) and vowel-consonant (VC) in Korean differently, considering the level of listeners' recognition. The proposed CW approach was evaluated by the subjective test, Comparison Category Rating (CCR) test of ITU-T P.800, showed better performance, that is, 0.18 and 0.24 higher than the unprocessed CVR approach, respectively.

Performance Improvement in the Multi-Model Based Speech Recognizer for Continuous Noisy Speech Recognition (연속 잡음 음성 인식을 위한 다 모델 기반 인식기의 성능 향상에 대한 연구)

  • Chung, Yong-Joo
    • Speech Sciences
    • /
    • v.15 no.2
    • /
    • pp.55-65
    • /
    • 2008
  • Recently, the multi-model based speech recognizer has been used quite successfully for noisy speech recognition. For the selection of the reference HMM (hidden Markov model) which best matches the noise type and SNR (signal to noise ratio) of the input testing speech, the estimation of the SNR value using the VAD (voice activity detection) algorithm and the classification of the noise type based on the GMM (Gaussian mixture model) have been done separately in the multi-model framework. As the SNR estimation process is vulnerable to errors, we propose an efficient method which can classify simultaneously the SNR values and noise types. The KL (Kullback-Leibler) distance between the single Gaussian distributions for the noise signal during the training and testing is utilized for the classification. The recognition experiments have been done on the Aurora 2 database showing the usefulness of the model compensation method in the multi-model based speech recognizer. We could also see that further performance improvement was achievable by combining the probability density function of the MCT (multi-condition training) with that of the reference HMM compensated by the D-JA (data-driven Jacobian adaptation) in the multi-model based speech recognizer.

  • PDF

Performance Comparison of the Speech Enhancement Methods for Noisy Speech Recognition (잡음음성인식을 위한 음성개선 방식들의 성능 비교)

  • Chung, Yong-Joo
    • Phonetics and Speech Sciences
    • /
    • v.1 no.2
    • /
    • pp.9-14
    • /
    • 2009
  • Speech enhancement methods can be generally classified into a few categories and they have been usually compared with each other in terms of speech quality. For the successful use of speech enhancement methods in speech recognition systems, performance comparisons in terms of speech recognition accuracy are necessary. In this paper, we compared the speech recognition performance of some of the representative speech enhancement algorithms which are popularly cited in the literature and used widely. We also compared the performance of speech enhancement methods with other noise robust speech recognition methods like PMC to verify the usefulness of speech enhancement approaches in noise robust speech recognition systems.

  • PDF

A Study on the Robust Bimodal Speech-recognition System in Noisy Environments (잡음 환경에 강인한 이중모드 음성인식 시스템에 관한 연구)

  • 이철우;고인선;계영철
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.28-34
    • /
    • 2003
  • Recent researches have been focusing on jointly using lip motions (i.e. visual speech) and speech for reliable speech recognitions in noisy environments. This paper also deals with the method of combining the result of the visual speech recognizer and that of the conventional speech recognizer through putting weights on each result: the paper proposes the method of determining proper weights for each result and, in particular, the weights are autonomously determined, depending on the amounts of noise in the speech and the image quality. Simulation results show that combining the audio and visual recognition by the proposed method provides the recognition performance of 84% even in severely noisy environments. It is also shown that in the presence of blur in images, the newly proposed weighting method, which takes the blur into account as well, yields better performance than the other methods.

Noise Estimation based on Standard Deviation and Sigmoid Function Using a Posteriori Signal to Noise Ratio in Nonstationary Noisy Environments

  • Lee, Soo-Jeong;Kim, Soon-Hyob
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.6
    • /
    • pp.818-827
    • /
    • 2008
  • In this paper, we propose a new noise estimation and reduction algorithm for stationary and nonstationary noisy environments. This approach uses an algorithm that classifies the speech and noise signal contributions in time-frequency bins. It relies on the ratio of the normalized standard deviation of the noisy power spectrum in time-frequency bins to its average. If the ratio is greater than an adaptive estimator, speech is considered to be present. The propose method uses an auto control parameter for an adaptive estimator to work well in highly nonstationary noisy environments. The auto control parameter is controlled by a linear function using a posteriori signal to noise ratio(SNR) according to the increase or the decrease of the noise level. The estimated clean speech power spectrum is obtained by a modified gain function and the updated noisy power spectrum of the time-frequency bin. This new algorithm has the advantages of much more simplicity and light computational load for estimating the stationary and nonstationary noise environments. The proposed algorithm is superior to conventional methods. To evaluate the algorithm's performance, we test it using the NOIZEUS database, and use the segment signal-to-noise ratio(SNR) and ITU-T P.835 as evaluation criteria.

Noise Reduction Using the Standard Deviation of the Time-Frequency Bin and Modified Gain Function for Speech Enhancement in Stationary and Nonstationary Noisy Environments

  • Lee, Soo-Jeong;Kim, Soon-Hyob
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.3E
    • /
    • pp.87-96
    • /
    • 2007
  • In this paper we propose a new noise reduction algorithm for stationary and nonstationary noisy environments. Our algorithm classifies the speech and noise signal contributions in time-frequency bins, and is not based on a spectral algorithm or a minimum statistics approach. It relies on calculating the ratio of the standard deviation of the noisy power spectrum in time-frequency bins to its normalized time-frequency average. We show that good quality can be achieved for enhancement speech signal by choosing appropriate values for ${\delta}_t\;and\;{\delta}_f$. The proposed method greatly reduces the noise while providing enhanced speech with lower residual noise and somewhat higher mean opinion score (MOS), background intrusiveness (BAK) and signal distortion (SIG) scores than conventional methods.

Selective pole filtering based feature normalization for performance improvement of short utterance recognition in noisy environments (잡음 환경에서 짧은 발화 인식 성능 향상을 위한 선택적 극점 필터링 기반의 특징 정규화)

  • Choi, Bo Kyeong;Ban, Sung Min;Kim, Hyung Soon
    • Phonetics and Speech Sciences
    • /
    • v.9 no.2
    • /
    • pp.103-110
    • /
    • 2017
  • The pole filtering concept has been successfully applied to cepstral feature normalization techniques for noise-robust speech recognition. In this paper, it is proposed to apply the pole filtering selectively only to the speech intervals, in order to further improve the recognition performance for short utterances in noisy environments. Experimental results on AURORA 2 task with clean-condition training show that the proposed selectively pole-filtered cepstral mean normalization (SPFCMN) and selectively pole-filtered cepstral mean and variance normalization (SPFCMVN) yield error rate reduction of 38.6% and 45.8%, respectively, compared to the baseline system.