• Title/Summary/Keyword: Noise-vibration-harshness

Search Result 61, Processing Time 0.022 seconds

An integrated development methodology of low noise accessory drive system in internal combustion engines (내연기관의 저소음 보기류구동 시스템을 위한 통합 개발 방법론)

  • Park, Keychun;Kong, Jinhyung;Lee, Byunghyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.3
    • /
    • pp.183-191
    • /
    • 2016
  • A systematic development process for the low noise FEAD (Front End Accessory Drive) system is presented by combining CAE (Computer Aided Engineering) and the experimental rig test. In the estimation of the belt drive noise, two main difficulties arise from the high non-linearity due to the stick-slip contacts on the interfaces of the belt and pulleys, and the interaction of the belt drive system with the powertrain rotational parts. In this work, a recently developed analysis method of the belt drive has been employed considering powertrain rotational dynamics. As results, it shows good correlation with the vehicle tests in various operational modes. The established model has been employed to validate the new design improving the stick-slip noise of the problematic FEAD system. Furthermore, the best proposal of FEAD system in terms of functionality [NVH (Noise, Vibration and Harshness), fuel economy, cost. etc.] has been suggested in the concept design stage of new engine through this presented methodology.

Reduction of Structure-borne Idle Noise with the Insertion of a Composite Body inside Vehicle Body Skeleton (차체골격내 복합체 삽입을 이용한 구조기인 아이들 소음저감)

  • Kim, Hyo-Sig;Kim, Joong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.4
    • /
    • pp.335-343
    • /
    • 2012
  • As a matter of fact, it has been not allowed to modify the shape of a vehicle body skeleton since the technical definition for the structure was fixed and the corresponding molds were developed. By the way, if it is available to apply an alternative to reinforce the skeleton without changing its mold, it must be much flexible to improve the performance qualities relevant to not only NVH(noise, vibration and harshness) but also crash and durability. Recently, a solution of so-called composite body becomes available for the need. We present a design method to insert the composite body inside a vehicle body skeleton in order to improve a structure-borne noise at the idle condition. The algorithms, topology optimization and design sensitivity analysis, are applied to mainly search the sensitive structural sections in the body skeleton and to extract the target stiffness of the sections. Inserting the composite bodies into the sensitive portions, it is predicted to achieve the countermeasures which can compromize the design availability in terms of the idle noise and weight. According to the validation result with test vehicles, the concerned noise transfer function is reduced and the idle booming noise is resultantly improved.

A Study on the Body Attachment Stiffness for the Road Noise

  • Kim Ki-Chang;Kim Chan-Mook
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.1304-1312
    • /
    • 2005
  • The ride and noise characteristics of a vehicle are significantly affected by the vibration transferred to the body through the chassis mounting points in the engine and suspension. It is known that body attachment stiffness is an important factor of idle noise and road noise for NVH performance improvement. The body attachment stiffness serves as a route design aimed at isolating the vibration generated inside the car due to the exciting force of the engine or road. The test result of the body attachment stiffness is shown in the FRF curve data; the stiffness level and sensitive frequency band are recorded by the data distribution. The stiffness data is used for analyzing the parts that fail to meet the target stiffness at a pertinent frequency band. The analysis shows that the target frequency band is between 200 and 500 Hz. As a result of the comparison in a mounted suspension, the analysis data is comparable to the test data. From these results, there is a general agreement between the predicted and measured responses. This procedure makes it possible to find the weak points before a proto car is produced, and to suggest proper design guidelines in order to improve the stiffness of the body structure.

Vibration Mode and Durability Characteristics of Automotive IDS using Rotary Swaging Process for Incremental Forming (로터리 스웨이징 공정의 점진성형에 의한 중공 드라이브샤프트의 진동모드 및 내구특성)

  • Lim Seong-Joo;Lee Nak-Kyu;Lee Chi-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.127-133
    • /
    • 2005
  • Rotary swaging is one of the incremental forming process which is a chipless process using the reduction of cross-sections of bars, tubes and wires. The TDS(Tube Drive Shaft) of monobloc used in automotive has been developed by the rotary swaging process. The mechanical characteristics of swaged parts such as the hardness, thickness and roughness are also estimated to conduct experimental analyses of rotary swaging process with the materials of 34Mn5 Furthermore the change in the vibration mode of TDS due to design parameters, which are the tube length, diameter and thickness, has been investigated and analysed. The weight of the TDS product is smaller by about $12.8\%$ than that of SDS with the same performance. It could be evidently found that the TDS is designed to be much lighter than SDS (Solid Drive Shaft). This advantage might give some possibility to improve the NVH (Noise-Vibration-Harshness) characteristics. A maximum torque and a total number of torsional repetitions for the TDS is checked and measured to know the torsional intensity and fatigue strength through the static torsion test and torsional durability test, respectively. A total number of the torsional repetitions up to the fracture for the TDS is greater than 250,000 times.

자동차 파워트레인의 소음 및 진동

  • 강구태
    • Journal of KSNVE
    • /
    • v.11 no.2
    • /
    • pp.207-215
    • /
    • 2001
  • 삶의 질적 향상에 대한 소비자의 욕구가 증대되고 환경문제에 대한 관심이 실생활과 밀접한 관계가 있는 자동차에 미치게 되면서, 배기가스 규제 강화와 함께 소음에 대한 소비자의 요구 수준이 점점 높아지고 있다. 자동차의 소음은 일반적으로 주행시 외부로 방사되는 주행소음(pass-by noise)과 승차감에 영향을 미치는 실내소음으로 구분할 수 있는데, 주행시 외부소음은 국내 2002년 법규와 유럽의 법규 등에서 그 규제가 점점 강화되고 있고, 실내소음은 자동차의 상품성을 좌우하는 요소로서 그 중요성이 점점 커지고 있다 각 자동차 생산업체들은 NVH (noise, vibration and harshness) 개선에 많은 관심을 두고 있으며, 특히 주행소음 및 실내소음 전반에 있어 발생요인으로 큰 비중을 차지하고 있는 파워트레인(엔진 및 트랜스미션)에 대한 NVH 개선에 많은 투자를 하고 있다. 최근 개발되고 있는 차세대 자동차 엔진들을 보아도 EU의 2005년 EURO-IV배기가스 규제 및 북미의 SULEV 규제를 만족함과 동시에, 연비 향상과 NVH 향상을 개발 목표로 하고 있음을 알 수 있다.(중략)

  • PDF

A Study on BSR Noise and Sound Quality Property for Vehicle Interior Module (자동차 인테리어 모듈의 BSR 소음과 음질 특성 연구)

  • Shin, Su-Hyun;Cheong, Cheol-Ung;Jung, Sung-Soo;Kang, Dae-Hwan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.6
    • /
    • pp.550-555
    • /
    • 2012
  • Among the various elements affecting a customer's evaluation of automobile quality, buzz, squeak and rattle(BSR) have been considered to be major factors. In most vehicle manufacturers, the BSR problems are solved by find-fix method with the vehicle road test, mainly due to various excitation sources, complex generation mechanism and subjective response. To systematically tackle the BSR problems in early stage of the vehicle development cycle, these difficulties should be resolved. The aim of the present paper is to characterize the sound quality property of BSR noise that can be used to assess the subjective responses to BSR. The four sound metrics from Zwicker's sound quality parameter are computed for the signals recorded for eight BSR noise source regions localized by using the acoustic-field visualized results. Then, the jury test of BSR noise are performed. On the basis of the computed sound metrics and jury test result is evaluated to represent the harshness of BSR noise. It is expected that the developed BSR measuring system and sound quality properties can be used to reduce the automotive interior BSR noise in terms of subjective levels as well as objective levels.

Construction and Comparison of Sound Quality Index for the Vehicle HVAC System Using Regression Model and Neural Network Model (회귀모형과 신경망모형을 이용한 차량공조시스템의 음질 인덱스 구축 및 비교)

  • Park, Sang-Gil;Lee, Hae-Jin;Sim, Hyun-Jin;Lee, You-Yub;Oh, Jae-Eung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.9 s.114
    • /
    • pp.897-903
    • /
    • 2006
  • The reduction of the vehicle interior noise has been the main interest of noise and vibration harshness (NVH) engineers. The driver's perception on the vehicle noise is affected largely by psychoacoustic characteristic of the noise as well as the SPL. In particular, the heating, ventilation and air conditioning (HVAC) system sound among the vehicle interior noise has been reflected sensitively in psychoacoustics view point. Even though the HVAC noise is not louder than overall noise level, it clearly affects subjective perception to drivers in the way of making to be nervous or annoyed. Therefore, these days a vehicle engineer takes aim at developing sound quality as well as reduction of noise. In this paper, we acquired noises in the HVAC from many vehicles. Through the objective and subjective sound quality (SQ) evaluation with acquiring noises recorded by the vehicle HVAC system, the simple and multiple regression models were obtained for the subjective evaluation 'Pleasant' using the semantic differential method (SDM). The regression procedure also allows you to produce diagnostic statistics to evaluate the regression estimates including appropriation and accuracy. Furthermore, the neural network (NN) model were obtained using three inputs(loudness, sharpness and roughness) of the SQ metrics and one output(subjective 'Pleasant'). Because human's perception is very complex and hard to estimate their pattern, we used NN model. The estimated models were compared with correlations between output indexes of SQ and hearing test results for verification data 'Pleasant'. As a result of application of the SQ indexes, the NN model was shown with the largest correlation of SQ indexes and we found possibilities to predict the SQ metrics.

Optimization of T-Structure Supporting Steering System Using μGA (승용차용 스티어링시스템 지지 T-형구조물의 최적설계)

  • Lee Jong Soo;Kim Sung Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.6 s.237
    • /
    • pp.809-814
    • /
    • 2005
  • The goal of this paper is to minimize the weight of the T-structure supporting steering system in reducing the vibration level on steering wheel which could be amplified by the resonance. Presently, requirements for reducing noise, vibration and harshness (NVH) in automotive area are more stringent than ever. One of them is the vibration of steering system which occurs sometimes at high speeds or when the engine is idling. Besides, the reduction of weight is also one of requirements for improvement of vehicle performance. This paper used the micro genetic algorithm as an optimization method to satisfy above two requirements. The whole T-structure assembly including steering column was used for frequency analysis.

Prediction of Interior Noise by Excitation Force of Powertrain Based on Hybrid Transfer Path Analysis (Hybrid TPA를 이용한 파워트레인 구조기인 실내소음 예측)

  • Kim, Sung-Jong;Lee, Sang-Kwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.12
    • /
    • pp.117-124
    • /
    • 2008
  • In early design stage, the simulation of interior noise is useful for the enhancement of the noise, vibration and harshness (NVH) performance in a vehicle. The traditional transfer path analysis (TPA) technology cannot simulate the interior noise since it uses the experimental method. In order to solve this problem, in this paper, the hybrid TPA is developed as the novel approach. The hybrid TPA uses the simulated excitation force as the input force, which excites the flexible body of a car at the mount point, while the traditional TPA uses the measured force. This simulated force is obtained by numerical analysis for the FE (finite element) model of a powertrain. The interior noise is predicted by multiplying the simulated force by the vibro-acoustic transfer function (VATF) of the vehicle. The VATF is the acoustic response in the compartment of a car to the input force at the mount point of the powertrain in the flexible car body. The trend of the predicted interior noise based on the hybrid TPA very well corresponds to the measured interior noise, although there is some difference due to not only the experimental error and the simulation error but also the effect of the air-borne path.

Engine Mounting System Optimization for Improve NVH (NVH 향상을 위한 엔진 설치 시스템 최적화)

  • Kim, Jang-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.4665-4671
    • /
    • 2013
  • Engine mounting system is the most responsible system for NVH performance of vehicle. The vibration at idle shake, road shake, Key ON/OFF, gear shift tuned by the engine mount position and stiffness. Previously described Engine mounting system theory investigated and summarized in this paper. Decoupling of the Power train rigid mode and Reducing the angle between Torque-Roll-Axis and Elastic-roll-Axis is starting point of optimization. Multi-optimization analysis was performed because of variety simulation case and FE-model. Eventually, Find the best mount location and the stiffness has improved the performance of the vehicle NVH.