• 제목/요약/키워드: Noise-induced

Search Result 1,116, Processing Time 0.033 seconds

Inverse Scattering Technique with Series Expanded Field of Dielectric Cylinders in Angular Spectral Domain (각스펙트럼 영역에서 전개함수 전계를 이용한 유전체 실린더에서의 역산란)

  • Kim, Ha-Chul;Choi, Hyun-Chul;Son, Hyon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.5
    • /
    • pp.698-707
    • /
    • 1998
  • For inverse scattering problems reconstructing cross-sectional permittivity distributions of dielectric cylinders, the angular spectral inverse technique using the moment method with pulse basis function suffers from large reconstruction error even if very small noise due to requiring the higher spectral informations on the larger cross-section of the cylinder. To reduce the number of higher-order spectra, this paper presents an improved inverse technique in angular spectral domain applying the moment procedure with a series-expansion basis function for the induced field in each enlarged cross-sectional cell. By choosing adequate spectra and averaging over the enlarged cells with a suitable weighting function, the reconstruction profiles reveal fine enough to suppress the noise effect significantly.

  • PDF

Channel Prediction based Adaptive Channel Tracking cheme in MIMO-OFDM Systems with Null Sub-carriers (Null 부반송파를 갖는 MIMO-OFDM에서 채널 예측 기반적응 채널 추적 방식)

  • Jeon, Hyoung-Goo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.5C
    • /
    • pp.556-564
    • /
    • 2007
  • This paper proposes an efficient scheme to track a time variant channel induced by multi-path Rayleigh fading in mobile MIMO-OFDM systems with null sub-carriers. The proposed adaptive channel tracking scheme removes in the frequency domain the interfering signals of the other transmit (Tx) antennas by using a predicted channel frequency response before starting the channel estimation. Time domain channel estimation is then performed to reduce the additive white Gaussian noise (AWGN). The simulation results show that the proposed method is better than the conventional channel tracking method [3] in time varying channel environments. At a Doppler frequency of 300 Hz and bit error rates (BER) of 10-3, signal-to-noise power ratio (Eb/N0) gains of about 2.5 dB are achieved relative to the conventional channel tracking method [3]. At a Doppler frequency of 600 Hz, the performance difference between the proposed method and conventional one becomes much larger.

Characterizing the ac-dc-ac Degradation of Aircraft and Vehicle Organic Coatings using Embedded Electrodes

  • Bierwagen, Gordon P.;Allahar, Kerry N.;Su, Quan;Victoria, Johnston-Gelling
    • Corrosion Science and Technology
    • /
    • v.6 no.5
    • /
    • pp.261-268
    • /
    • 2007
  • Embedded sensors were used as an in-situcorrosion-sensing device for aircraft and vehicular structures protected by organic coatings. Results are presented changes associated with a standard Airforce aircraft coating and a standard Army vehicle coating were monitored by embedded sensors. These coatings consisted of a polyurethane topcoat and an epoxy primer, however are formulated to provide different characteristics. The ac-dc-ac testing method was used to accelerate the degradation of these coatings while being immersed in a NaCl medium. Electrochemical impedance spectroscopy and electrochemical noise measurement experiments were used to monitor the induced changes. A comparison of the results between coatings subjected to the ac-dc-ac exposure and coatings subjected to only constant immersion in the NaCl medium is presented. The results were used to demonstrate the effectiveness of the ac-dc-ac method at accelerating the degradation of an organic coating without observably changing the normal mechanism of degradation. The data highlights the different features of the coating systems and tracks them while the coating is being degraded. The aircraft coating was characterized by a high-resistant topcoat that can mask corrosion/primer degradation at the primer/substrate interface whereas the vehicle coating was characterized by a low-resistant topcoat with an effective corrosion inhibiting primer. Details of the ac-dc-ac degradation were evaluated by using an equivalent circuit to help interpret the electrochemical impedance data.

A Study on the Attenuation of Flip-over Vibration in the Flat Blade Windshield Wiper (플랫 블레이드 윈드실드 와이퍼의 역전 진동 저감에 관한 연구)

  • Lee, Hyeong-Ill
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.10
    • /
    • pp.974-984
    • /
    • 2012
  • This research introduces a new method to attenuate flip-over vibration generation in the flat blade windshield wiper by adjusting the contact pressure between the windshield glass and the blade. The knocking force in the flip-over action of the blade is decreased by inducing gradual tilting-over along the rubber strip of the blade. This gradual tilting-over is induced by introducing a non-uniform contact pressure distribution between the blade and windshield glass. The contact pressure distribution is adjusted by controlling the unloaded profile of the body spring in the blade using a procedure proposed in a previous study. Two blades, one blade designed to generate a uniform pressure distribution and the other designed to generate non-uniform pressure distribution, are developed using the procedure. Contact pressure distributions of the developed blades are measured using a special device and compared with the intended distributions confirming the similarities between the two groups. Vertical and lateral vibrations of the two blades are measured under realistic operating condition simulated by a wiper test rig. The vertical vibrations of the blade with non-uniform contact pressure are substantially smaller than corresponding vibrations of the blade with uniform contact pressure over the entire rubber strip.

Assessment on the Actual Vibration Exposure of Workers Engaging in Vibration Induced Works (일부 진동작업 종사 근로자의 진동노출 수준 평가)

  • Kim, Kab-Bae;Chung, Eun-Kyo;You, Ki-Ho;Jang, Jae-Kil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.10
    • /
    • pp.940-948
    • /
    • 2012
  • In Korea, researches on the exposure assessment of the hand-transmitted vibration started from the mid-90, however, they were performed in the limited industries such as auto-assembly plants and the evaluation of the vibration was mostly conducted by ISO 5349(1986). Therefore, it was necessary to assess hand-transmitted vibration levels of workplace such as ship building/repairing industry or mining industry where occupational injuries are largely occurred and to evaluate the vibration levels using revised ISO 5349(2001). The SVAN 948 Four Channels Sound & Vibration Analyser was used for the measurement. The workers using a chain saw were exposed to 1.7~2.8 $m/s^2$ of daily vibration level. Workers using a rock drill in a coal mining were exposed to the highest vibration acceleration among workers and the levels were 7.1~10.8 $m/s^2$. Vibration levels of grinders were different according to the types of grinders. The hand-transmitted vibration of 3 types of grinders were measured and the levels were 3.3~11.1 $m/s^2$. Workers using a impact wrench were exposed to 1.5~1.6 $m/s^2$ of vibration. Out of 20 kinds of machines, only 4 tools provided the information of vibration acceleration on the instructions. In addition, the current condition of workplace to control vibration was not much different from the past because there are no vibration exposure limit.

A Survey on the Changes in Industrial Noisy Environment and Rearing loss of Workers (산업장 소음환경과 근로자 청력손실에 변동에 관한 조사)

  • Lee, Yong-Hwan
    • Journal of Preventive Medicine and Public Health
    • /
    • v.22 no.3 s.27
    • /
    • pp.337-354
    • /
    • 1989
  • In order to evaluate the noisy environment and hearing loss of workers served in noisy working environment, the author investigated 212 manufacturing industries located in Ulsan Industrial District that could be observed for 3 successive years from 1986 to 1988. The obtained results were as follows: 1. There was increased tendency in the number of workers served in noisy working environment and that of examined of hearing loss for three years. 2. In the noise level of working environment, the number of industries less than 89dB(A) was increased every year, while more than 90dB(A) was in decreasing tendency. 3. Mean hearing loss by frequency was the most prominent in 4,000Hz, the level of hearing loss was in increasing tendency yearly, and that of left eat was higher than right ear in almost all type of industry. 4. In 1986, the level of hearing loss by type of industry was highest in manufacture of electric and electronic, and followed by paper and plywood, and metal products in right ear: that was in the order of manufacture of electric and electronic, metal products and textile products in left ear. In 1987, that was in the order of manufacture of metal products, machinery and others in right ear, and metal products, machinery and food stuff in left ear in 1988, manufacture of others, food stuff and machinery in both ear. 5. In hearing loss by service duration, right ear of 5-9 years group was higher than that of less than 5 years in 1987, whereas in 1988, the longer in service duration, the higher in the level of hearing loss in both ear. 6. In 1986, 1987 and 1988, the prevalence rate of noise-induced hearing loss were showed increasing tendency as 0.4% ,0.8% and 1.5% , respectively, and manufacture of textile products was highest(1.0%) in 1986, machinery(1.2%) in 1987 and others(2.8%) in 1988. 7. The proportion of grade E in early loss index were 76.1% (1986), 78.2% (1987) and 80.5% (1988) in left ear, 75.9% (1986), 76.4% (1987) and 75.9% (1988) in right ear.

  • PDF

Design of Semi-Active Tendon for Vibration Control of Large Structures (대형 구조물의 진동제어를 위한 반능동형 댐퍼의 설계)

  • Kim, Saang-Bum;Yun, Chung-Bang;Gu, Ja-In
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.282-286
    • /
    • 2000
  • In this paper, magneto-rheological(MR) damper is studied for vibration control of large infra structures under earthquake. Generally, active control devices need a large control force and a high power supply system to reduce the vibration effectively. Large and miss tuned control force may induce the dangerous situation such that the generated large control force acts to amplify the structural vibration. Recently, to overcome the weaknesses of the active control, the semi-active control method is suggested by many researchers. Semi-active control uses the passive control device of which the characteristics can be modified. Control force of the semi-active device is not generated from the actuator with power supply. It is generated as a dynamic reaction force of the device same as in the passive control case, so the control system is inherently stable and robust. Unlike the case of passive control, control force of semi-active control is adjusted depending on the measured response of the structure, so the vibration can be reduced more effectively against various unknown environmental loads. Magneto-rheological(MR) damper is one of the semi-active devices. Dynamic characteristics of the MR material can be changed by applying the magnetic fields. So the control of MR damper needs only small power. Response time of MR to the input voltage is very short, so the high performance control is possible. MR damper has a high force capacity so it is adequate to the vibration control of large infra structure. Because MR damper has a nonlinear property, normal control method used in active control may not be effective. Clipped optimal control, modified bang-bang control etc. have been suggested to MR damper by many researchers. In this study, sliding mode fuzzy control(SMFC) is applied to MR damper. Genetic algorithm is used for the controller tuning. To verify the applicability of MR damper and suggested algorithm, numerical simulation on the aseismic control is carried out. Simulation model is three-story building structure, which was used in the paper of Dyke, et al. The control performance is compared with clipped optimal control. The present results indicate that the SMFC algorithm can reduce the earthquake-induced vibration very effectively.

  • PDF

Accuracy and robustness of hysteresis loop analysis in the identification and monitoring of plastic stiffness for highly nonlinear pinching structures

  • Hamish Tomlinson;Geoffrey W. Rodgers;Chao Xu;Virginie Avot;Cong Zhou;J. Geoffrey Chase
    • Smart Structures and Systems
    • /
    • v.31 no.2
    • /
    • pp.101-111
    • /
    • 2023
  • Structural health monitoring (SHM) covers a range of damage detection strategies for buildings. In real-time, SHM provides a basis for rapid decision making to optimise the speed and economic efficiency of post-event response. Previous work introduced an SHM method based on identifying structural nonlinear hysteretic parameters and their evolution from structural force-deformation hysteresis loops in real-time. This research extends and generalises this method to investigate the impact of a wide range of flag-shaped or pinching shape nonlinear hysteretic response and its impact on the SHM accuracy. A particular focus is plastic stiffness (Kp), where accurate identification of this parameter enables accurate identification of net and total plastic deformation and plastic energy dissipated, all of which are directly related to damage and infrequently assessed in SHM. A sensitivity study using a realistic seismic case study with known ground truth values investigates the impact of hysteresis loop shape, as well as added noise, on SHM accuracy using a suite of 20 ground motions from the PEER database. Monte Carlo analysis over 22,000 simulations with different hysteresis loops and added noise resulted in absolute percentage identification error (median, (IQR)) in Kp of 1.88% (0.79, 4.94)%. Errors were larger where five events (Earthquakes #1, 6, 9, 14) have very large errors over 100% for resulted Kp as an almost entirely linear response yielded only negligible plastic response, increasing identification error. The sensitivity analysis shows accuracy is reduces to within 3% when plastic drift is induced. This method shows clear potential to provide accurate, real-time metrics of non-linear stiffness and deformation to assist rapid damage assessment and decision making, utilising algorithms significantly simpler than previous non-linear structural model-based parameter identification SHM methods.

Optimization of image reconstruction method for dual-particle time-encode imager through adaptive response correction

  • Dong Zhao;Wenbao Jia;Daqian Hei;Can Cheng;Wei Cheng;Xuwen Liang;Ji Li
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1587-1592
    • /
    • 2023
  • Time-encoded imagers (TEI) are important class of instruments to search for potential radioactive sources to prevent illicit transportation and trafficking of nuclear materials and other radioactive sources. The energy of the radiation cannot be known in advance due to the type and shielding of source is unknown in practice. However, the response function of the time-encoded imagers is related to the energy of neutrons or gamma-rays. An improved image reconstruction method based on MLEM was proposed to correct for the energy induced response difference. In this method, the count vector versus time was first smoothed. Then, the preset response function was adaptively corrected according to the measured counts. Finally, the smoothed count vector and corrected response were used in MLEM to reconstruct the source distribution. A one-dimensional dual-particle time-encode imager was developed and used to verify the improved method through imaging an Am-Be neutron source. The improvement of this method was demonstrated by the image reconstruction results. For gamma-ray and neutron images, the angular resolution improved by 17.2% and 7.0%; the contrast-to-noise ratio improved by 58.7% and 14.9%; the signal-to-noise ratio improved by 36.3% and 11.7%, respectively.

Analysis of Indirect Lightning Impact on Aircraft Shielded Cable Structure in accordance with RTCA DO-160G Sec. 22 (항공기용 차폐 케이블의 구조에 따른 RTCA DO-160G Sec. 22 간접낙뢰 영향성 분석)

  • Sung-Yeon Kim;Tae-Hyeon Kim;Min-Seong Kim;Wang-Sang Lee
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.6
    • /
    • pp.35-45
    • /
    • 2023
  • In this paper, we analyze the influence of indirect lightning strikes based on the structure of shielded cables used in an aircraft and propose a cable structure to enhance shielding effectiveness. Cables in an aircraft account for the largest proportion among components and play a crucial role in connecting aircraft frames and electronic devices; thus, making them highly influential. In particular, indirect lightning strike noise can lead to malfunctions and cause damage in aircraft electronic equipment, making the utilization of shielded cables essential for mitigating damage caused by indirect lightning strike noise. We conducted an analysis of the impact of indirect lightning strikes on aircraft shielded cables considering factors, such as the presence of shielding layers, core, and insulation in the cable structure. Furthermore, we validated our findings through simulations and experiments by applying the internationally recognized standard for indirect lightning, RTCA DO-160G Sec. 22.