• 제목/요약/키워드: Noise source localization

검색결과 121건 처리시간 0.025초

로봇 시스템에 적용될 음원 위치 추정 방법 (Sound Source Localization Method Applied to Robot System)

  • 권병호;박영진;박윤식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.28-32
    • /
    • 2007
  • While various methods for sound source localization have been developed, most of them utilize on the time difference of arrival (TDOA) between microphones or the measured head related transfer functions (HRTF). In case of a real robot implementation, the former has a merit of light computation load to estimate the sound direction but can not consider the effect of platform on TDOAs, while the latter can, because characteristics of robot platform are included in HRTF. However, the latter needs large resources for the HRTF database of a specific robot platform. We propose the compensation method which has the light computation load while the effect of platform on TDOA can be taken into account. The proposed method is used with spherical head related transfer function (SHRTF) on the assumption that robot platform, for example a robot head, installed microphones can be modeled to a sphere. We verify that the proposed method decreases the estimation error caused by the robot platform through the simulation and experiment in real environment.

  • PDF

마이크로폰 어레이를 이용한 회전하는 소음원 가시화에 관한 연구 (Study on Be-Dopplerization Technique for Rotating Source Localization)

  • 박성;이재형;최종수;김재무;이욱
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.200-204
    • /
    • 2005
  • The use of beamforming method and de-Dopplerization technique was applied in studying the rotating sound sources. Acoustic analysis of a moving sound source required that the measured sound signals be do-Dopplerized and restored as of the original emission signals. Two main issues of the signal reconstruction in time domain are addressed herein: First, to remove Doppler effect from the measured data and to restore the original emission data of the moving source. The difference of the time domain beamforming from the frequency domain beamforming was mentioned. Also, the time domain beamforming method is deployed in the test and the comparisons were made to the frequency domain results. The time domain signal reconstruction was numerically simulated prior to the application. To validate the de-Dopplerization Performance, the rotating Point sources were examined and localized by the use of a phased array of microphone. The application of prop-rotor was conducted in a hovering condition. The results of reconstructing time signals of rotating sources and its locations were shown in the power distribution maps. In the prop-rotor measurements, the acoustic source locations were successfully verified in varying positions for different frequencies of interest.

  • PDF

공분산 기반 수중 ultra-short baseline 시스템의 위치 추정 성능 개선 기법 (Covariance-based source localization performance improvement for underwater ultra-short baseline systems)

  • 한상만;차민혁;고학림;이호준
    • 한국음향학회지
    • /
    • 제43권1호
    • /
    • pp.89-94
    • /
    • 2024
  • Ultra-Short BaseLine(USBL) 은 센서 간격이 좁은 배열을 사용하기 때문에 위치 추정 성능 향상을 위해서는 정밀한 동기화가 필요하다. 그러나 수중 환경은 비교적 강한 잡음과 다중 경로 및 도플러 등의 수중 음향 채널로 인해 동기화 오류가 발생하여 위치 추정 성능이 저하된다. 본 논문에서는 수중 USBL 시스템의 위치 추정 성능을 향상시키기 위한 공분산 기반 동기 보상 기법을 제안한다. 제안 방법은 상호상관을 통해 신호를 정렬한 후, 정렬된 신호의 공분산을 계산한다. 공분산에서 동기 오차는 위상차와 선형적으로 관련되어 있으므로 위상차를 공분산으로부터 추정하여 동기 오차를 보상한다. 전산 모의실험을 통해 제안 방법이 기존 상호상관 방법보다 우수한 위치 추정 성능을 가지는 것을 보였다.

단일 센서와 공간집속 신호처리 기술을 이용한 복합재 판에서의 충격위치 결정 (Impact Localization of a Composite Plate Using a Single Transducer and Spatial Focusing Signal Processing Techniques)

  • 조성종;정현조
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 추계학술대회 논문집
    • /
    • pp.715-722
    • /
    • 2012
  • A structural health monitoring (SHM) technique for locating impact position in a composite plate is presented in this paper. The technique employs a single sensor and spatial focusing properties of time reversal (TR) and inverse filtering (IF). We first examine the focusing effect of back-propagated signal at the impact position and its surroundings through simulation. Impact experiments are then carried out and the localization images are found using the TR and IF signal processing, respectively. Both techniques provide accurate impact location results. Compared to existing techniques for locating impact or acoustic emission source, the proposed methods have the benefits of using a single sensor and not requiring knowledge of material properties and geometry of structures. Furthermore, it does not depend on a particular mode of dispersive Lamb waves that is frequently used in the SHM of plate-like structures.

  • PDF

주파수영역 빔형성 기법을 이용한 3차원 소음원 가시화 (Study on 3D Sound Source Visualization Using Frequency Domain Beamforming Method)

  • 황은수;이재형;이욱;최종수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.490-495
    • /
    • 2009
  • An approach to 3D visualization of multiple sound sources has been developed with the application of a moving array technique. Frequency-domain beamforming algorithm is used to generate a beam power map and the sound source is modeled as a point source. When a conventional delay and sum beamformer is used, it is considered that 2D distribution of sensors leads to have deficiency in spatial resolution along a measurement distance. The goal of moving an array in this study is to form 3D array aperture surrounding multiple sound sources so that the improved spatial resolution in a virtual space can be expected. Numerical simulation was made to examine source localization capabilities of various shapes of array. The 3D beam power maps of hemispherical and spherical distribution are found to have very sharp resolution. For experiments, two sound sources were placed in the middle of defined virtual space and arc-shaped line array was rotated around the sources. It is observed that spherical array show the most accurate determination of multiple sources' positions.

  • PDF

주파수영역 빔형성 기법을 이용한 3차원 소음원 가시화 (Study on 3D Sound Source Visualization Using Frequency Domain Beamforming Method)

  • 황은수;이재형;이욱;최종수
    • 한국소음진동공학회논문집
    • /
    • 제19권9호
    • /
    • pp.907-914
    • /
    • 2009
  • An approach to 3D visualization of multiple sound sources has been developed with the application of a moving array technique. Frequency domain beamforming algorithm is used to generate a beam power map and the sound source is modeled as a point source. When a conventional delay and sum beamformer is used, it is considered that 2D distribution of sensors leads to have deficiency in spatial resolution along a measurement distance. The goal of moving an array in this study is to form 3D array aperture surrounding multiple sound sources so that the improved spatial resolution in a virtual space can be expected. Numerical simulation was made to examine source localization capabilities of various shapes of array. The 3D beam power maps of hemispherical and spherical distribution are found to have very sharp resolution. For experiments, several sound sources were placed in the middle of defined virtual space and arc-shaped line array was rotated around the sources. It is observed that spherical array shows the most accurate determination of multiple sources' positions.

무향수조 내에서 MUSIC 알고리듬을 이용한 음원의 위치 추적 (Source Localization in the Anechoic Basin at KRISO/KORDI by Using MUSIC Algorithm)

  • 김시문;최영철;이종무;박종원;임용곤
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 추계학술대회 논문집
    • /
    • pp.68-72
    • /
    • 2002
  • Localization with array sensors has been applied for not only military but also non-military purposes. The identification of submarines and fish finding are those examples. Nowadays the demand for noise identification is increasing to characterize noise sources and improve acoustic performance of underwater acoustic equipment. For that reason KRISO/KORDI recently constructed an anechoic basin which bus reflection only at the free surface. This paper suggests a noise identification methods using MUSIC algorithm in such an acoustic field. For comparison phase delay sum and minimum valiance methods are also described. At first basic principles are described. A several numerical simulations are also performed. The results say that reflection effect many cause a new non-real source although good estimation is obtained under no reflection conditions.

  • PDF

모델 변수가 EEG의 Single Dipole Source 추정에 끼치는 영향에 관한 연구 (The effect of model parameters on single dipole source tracing in EEG)

  • 박기범;박인호;김동우;배병훈;김수용;박찬영;김신태
    • 한국의학물리학회지:의학물리
    • /
    • 제5권1호
    • /
    • pp.41-53
    • /
    • 1994
  • 단일 쌍극자 모델을 source localization 문제에 적용시키는 것은 초보적이기도 하지만 필수적이기도 하다. 시abf레이션을 이용하여 단일 쌍극자를 추적함으로써 얻은 결과는 실제 인간의 뇌에 관한 EEG 임상 실험에 여러가지 정보를 제공해줄 수 있기 때문이다. 이번 논문에서는 EEG실험에서의 전극 배치가 S/N(signal to noise ratio)과 추정 오차 사이에 어떤 영향을 미치는 가를 Monte Carlo 시뮬레이션으로 조사하였다. 머리모델은 3중 구각 모델을 사용하였고 이를 이용하여 forward problem을 계산하였다. 쌍극자 파라미터를 minimization하는 문제는 simplex method를 이용하여 계산하였다. 컴퓨터 시뮬레이션 결과, 특이한 점은 전극의 밀도와 입체각에 의해 쌍극자 파라미터 오차가 변화했다는 사실이다. 이것은 곧바로 전극 배치와 연관이 된다. 실제 EEG 실험에서 전극배치를 어떻게 했는가에 따라 그에 따른 오차가 변화한다.

  • PDF

소음 신호의 웨이블렛 변환 및 상호상관 함수를 이용한 고장 검출 및 위치 판별 (Fault Detection and Localization using Wavelet Transform and Cross-correlation of Audio Signal)

  • 지효근;김정현
    • 한국정밀공학회지
    • /
    • 제31권4호
    • /
    • pp.327-334
    • /
    • 2014
  • This paper presents a method of fault detection and fault localization from acoustic noise measurements. In order to detect the presence of noise sources wavelet transform is applied to acoustic signal. In addition, a cross correlation based method is proposed to calculate the exact location of the noise allowing the user to quickly diagnose and resolve the source of the noise. The fault detection system is implemented using two microphones and a computer system. Experimental results show that the system can detect faults due to artifacts accidentally inserted during the manufacturing process and estimate the location of the fault with approximately 1 cm precision.