• Title/Summary/Keyword: Noise robustness

Search Result 565, Processing Time 0.029 seconds

Two-stage damage identification for bridge bearings based on sailfish optimization and element relative modal strain energy

  • Minshui Huang;Zhongzheng Ling;Chang Sun;Yongzhi Lei;Chunyan Xiang;Zihao Wan;Jianfeng Gu
    • Structural Engineering and Mechanics
    • /
    • v.86 no.6
    • /
    • pp.715-730
    • /
    • 2023
  • Broad studies have addressed the issue of structural element damage identification, however, rubber bearing, as a key component of load transmission between the superstructure and substructure, is essential to the operational safety of a bridge, which should be paid more attention to its health condition. However, regarding the limitations of the traditional bearing damage detection methods as well as few studies have been conducted on this topic, in this paper, inspired by the model updating-based structural damage identification, a two-stage bearing damage identification method has been proposed. In the first stage, we deduce a novel bearing damage localization indicator, called element relative MSE, to accurately determine the bearing damage location. In the second one, the prior knowledge of bearing damage localization is combined with sailfish optimization (SFO) to perform the bearing damage estimation. In order to validate the feasibility, a numerical example of a 5-span continuous beam is introduced, also the noise robustness has been investigated. Meanwhile, the effectiveness and engineering applicability are further verified based on an experimental simply supported beam and actual engineering of the I-40 Bridge. The obtained results are good, which indicate that the proposed method is not only suitable for simple structures but also can accurately locate the bearing damage site and identify its severity for complex structure. To summarize, the proposed method provides a good guideline for the issue of bridge bearing detection, which could be used to reduce the difficulty of the traditional bearing failure detection approach, further saving labor costs and economic expenses.

Transmission of 200-Gb/s 2-channel OTDM-PAM4 Signal Based on CSRZ Pulse Generated by Mach-Zehnder Modulator (마하 젠더 변조기로 생성된 CSRZ 펄스 기반의 200 Gb/s OTDM-PAM4 신호의 전송)

  • Sunghyun Bae
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.4
    • /
    • pp.151-156
    • /
    • 2023
  • We propose to implement cost-effectively a high-speed short-haul interconnect by transmitting a 200-Gb/s/λ two-channel optical time-division-multiplexed signal generated by a carrier-suppressed optical pulse, which improves the robustness of the multiplexed signal to chromatic dispersion. The multiplexed 200-Gb/s signal is generated in the transmitter by combining two 100-Gb/s 4-level pulse-amplitude-modulated signals (generated using the optical pulse and two Mach-Zehnder modulators). After the signal is transmitted over a fiber, it is amplified by a semiconductor optical amplifier and detected by a photodiode. The amplified spontaneous emission noise is eliminated by an optical band-pass filter. The transmitted signal is reconstructed by a 2 × 2 multiple-input multiple-output equalizer, which compensates for crosstalk. Due to the use of the carrier-suppressed optical pulse, the 200-Gb/s signal can be transmitted over fiber with a chromatic dispersion of 40 ps/nm.

A numerical application of Bayesian optimization to the condition assessment of bridge hangers

  • X.W. Ye;Y. Ding;P.H. Ni
    • Smart Structures and Systems
    • /
    • v.31 no.1
    • /
    • pp.57-68
    • /
    • 2023
  • Bridge hangers, such as those in suspension and cable-stayed bridges, suffer from cumulative fatigue damage caused by dynamic loads (e.g., cyclic traffic and wind loads) in their service condition. Thus, the identification of damage to hangers is important in preserving the service life of the bridge structure. This study develops a new method for condition assessment of bridge hangers. The tension force of the bridge and the damages in the element level can be identified using the Bayesian optimization method. To improve the number of observed data, the additional mass method is combined the Bayesian optimization method. Numerical studies are presented to verify the accuracy and efficiency of the proposed method. The influence of different acquisition functions, which include expected improvement (EI), probability-of-improvement (PI), lower confidence bound (LCB), and expected improvement per second (EIPC), on the identification of damage to the bridge hanger is studied. Results show that the errors identified by the EI acquisition function are smaller than those identified by the other acquisition functions. The identification of the damage to the bridge hanger with various types of boundary conditions and different levels of measurement noise are also studied. Results show that both the severity of the damage and the tension force can be identified via the proposed method, thereby verifying the robustness of the proposed method. Compared to the genetic algorithm (GA), particle swarm optimization (PSO), and nonlinear least-square method (NLS), the Bayesian optimization (BO) performs best in identifying the structural damage and tension force.

A vibration-based approach for detecting arch dam damage using RBF neural networks and Jaya algorithms

  • Ali Zar;Zahoor Hussain;Muhammad Akbar;Bassam A. Tayeh;Zhibin Lin
    • Smart Structures and Systems
    • /
    • v.32 no.5
    • /
    • pp.319-338
    • /
    • 2023
  • The study presents a new hybrid data-driven method by combining radial basis functions neural networks (RBF-NN) with the Jaya algorithm (JA) to provide effective structural health monitoring of arch dams. The novelty of this approach lies in that only one user-defined parameter is required and thus can increase its effectiveness and efficiency, as compared to other machine learning techniques that often require processing a large amount of training and testing model parameters and hyper-parameters, with high time-consuming. This approach seeks rapid damage detection in arch dams under dynamic conditions, to prevent potential disasters, by utilizing the RBF-NNN to seamlessly integrate the dynamic elastic modulus (DEM) and modal parameters (such as natural frequency and mode shape) as damage indicators. To determine the dynamic characteristics of the arch dam, the JA sequentially optimizes an objective function rooted in vibration-based data sets. Two case studies of hyperbolic concrete arch dams were carefully designed using finite element simulation to demonstrate the effectiveness of the RBF-NN model, in conjunction with the Jaya algorithm. The testing results demonstrated that the proposed methods could exhibit significant computational time-savings, while effectively detecting damage in arch dam structures with complex nonlinearities. Furthermore, despite training data contaminated with a high level of noise, the RBF-NN and JA fusion remained the robustness, with high accuracy.

Visual Model of Pattern Design Based on Deep Convolutional Neural Network

  • Jingjing Ye;Jun Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.2
    • /
    • pp.311-326
    • /
    • 2024
  • The rapid development of neural network technology promotes the neural network model driven by big data to overcome the texture effect of complex objects. Due to the limitations in complex scenes, it is necessary to establish custom template matching and apply it to the research of many fields of computational vision technology. The dependence on high-quality small label sample database data is not very strong, and the machine learning system of deep feature connection to complete the task of texture effect inference and speculation is relatively poor. The style transfer algorithm based on neural network collects and preserves the data of patterns, extracts and modernizes their features. Through the algorithm model, it is easier to present the texture color of patterns and display them digitally. In this paper, according to the texture effect reasoning of custom template matching, the 3D visualization of the target is transformed into a 3D model. The high similarity between the scene to be inferred and the user-defined template is calculated by the user-defined template of the multi-dimensional external feature label. The convolutional neural network is adopted to optimize the external area of the object to improve the sampling quality and computational performance of the sample pyramid structure. The results indicate that the proposed algorithm can accurately capture the significant target, achieve more ablation noise, and improve the visualization results. The proposed deep convolutional neural network optimization algorithm has good rapidity, data accuracy and robustness. The proposed algorithm can adapt to the calculation of more task scenes, display the redundant vision-related information of image conversion, enhance the powerful computing power, and further improve the computational efficiency and accuracy of convolutional networks, which has a high research significance for the study of image information conversion.

An adaptive watermarking for remote sensing images based on maximum entropy and discrete wavelet transformation

  • Yang Hua;Xu Xi;Chengyi Qu;Jinglong Du;Maofeng Weng;Bao Ye
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.1
    • /
    • pp.192-210
    • /
    • 2024
  • Most frequency-domain remote sensing image watermarking algorithms embed watermarks at random locations, which have negative impact on the watermark invisibility. In this study, we propose an adaptive watermarking scheme for remote sensing images that considers the information complexity to select where to embed watermarks to improve watermark invisibility without affecting algorithm robustness. The scheme converts remote sensing images from RGB to YCbCr color space, performs two-level DWT on luminance Y, and selects the high frequency coefficient of the low frequency component (HHY2) as the watermark embedding domain. To achieve adaptive embedding, HHY2 is divided into several 8*8 blocks, the entropy of each sub-block is calculated, and the block with the maximum entropy is chosen as the watermark embedding location. During embedding phase, the watermark image is also decomposed by two-level DWT, and the resulting high frequency coefficient (HHW2) is then embedded into the block with maximum entropy using α- blending. The experimental results show that the watermarked remote sensing images have high fidelity, indicating good invisibility. Under varying degrees of geometric, cropping, filtering, and noise attacks, the proposed watermarking can always extract high identifiable watermark images. Moreover, it is extremely stable and impervious to attack intensity interference.

Robust Radiometric and Geometric Correction Methods for Drone-Based Hyperspectral Imaging in Agricultural Applications

  • Hyoung-Sub Shin;Seung-Hwan Go;Jong-Hwa Park
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.3
    • /
    • pp.257-268
    • /
    • 2024
  • Drone-mounted hyperspectral sensors (DHSs) have revolutionized remote sensing in agriculture by offering a cost-effective and flexible platform for high-resolution spectral data acquisition. Their ability to capture data at low altitudes minimizes atmospheric interference, enhancing their utility in agricultural monitoring and management. This study focused on addressing the challenges of radiometric and geometric distortions in preprocessing drone-acquired hyperspectral data. Radiometric correction, using the empirical line method (ELM) and spectral reference panels, effectively removed sensor noise and variations in solar irradiance, resulting in accurate surface reflectance values. Notably, the ELM correction improved reflectance for measured reference panels by 5-55%, resulting in a more uniform spectral profile across wavelengths, further validated by high correlations (0.97-0.99), despite minor deviations observed at specific wavelengths for some reflectors. Geometric correction, utilizing a rubber sheet transformation with ground control points, successfully rectified distortions caused by sensor orientation and flight path variations, ensuring accurate spatial representation within the image. The effectiveness of geometric correction was assessed using root mean square error(RMSE) analysis, revealing minimal errors in both east-west(0.00 to 0.081 m) and north-south directions(0.00 to 0.076 m).The overall position RMSE of 0.031 meters across 100 points demonstrates high geometric accuracy, exceeding industry standards. Additionally, image mosaicking was performed to create a comprehensive representation of the study area. These results demonstrate the effectiveness of the applied preprocessing techniques and highlight the potential of DHSs for precise crop health monitoring and management in smart agriculture. However, further research is needed to address challenges related to data dimensionality, sensor calibration, and reference data availability, as well as exploring alternative correction methods and evaluating their performance in diverse environmental conditions to enhance the robustness and applicability of hyperspectral data processing in agriculture.

Foreign Accents Classification of English and Urdu Languages, Design of Related Voice Data Base and A Proposed MLP based Speaker Verification System

  • Muhammad Ismail;Shahzad Ahmed Memon;Lachhman Das Dhomeja;Shahid Munir Shah
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.10
    • /
    • pp.43-52
    • /
    • 2024
  • A medium scale Urdu speakers' and English speakers' database with multiple accents and dialects has been developed to use in Urdu Speaker Verification Systems, English Speaker Verification Systems, accents and dialect verification systems. Urdu is the national language of Pakistan and English is the official language. Majority of the people are non-native Urdu speakers and non-native English in all regions of Pakistan in general and Gilgit-Baltistan region in particular. In order to design Urdu and English speaker verification systems for security applications in general and telephone banking in particular, two databases has been designed one for foreign accent of Urdu and another for foreign accent of English language. For the design of databases, voice data is collected from 180 speakers from GB region of Pakistan who could speak Urdu as well as English. The speakers include both genders (males and females) with different age groups ranging from 18 to 69 years. Finally, using a subset of the data, Multilayer Perceptron based speaker verification system has been designed. The designed system achieved overall accuracy rate of 83.4091% for English dataset and 80.0454% for Urdu dataset. It shows slight differences (4.0% with English and 7.4% with Urdu) in recognition accuracy if compared with the recently proposed multilayer perceptron (MLP) based SIS achieved 87.5% recognition accuracy

An Embedded Watermark into Multiple Lower Bitplanes of Digital Image (디지털 영상의 다중 하위 비트플랜에 삽입되는 워터마크)

  • Rhee, Kang-Hyeon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.6 s.312
    • /
    • pp.101-109
    • /
    • 2006
  • Recently, according to the number of internet in widely use and the development of the related application program, the distribution and use of multimedia content(text, images, video, audio etc.) is very easy. Digital signal may be easily duplicated and the duplicated data can have same quality of original data so that it is difficult to warrant original owner. For the solution of this problem, the protection method of copyright which is encipher and watermarking. Digital watermarking is used to protect IP(Intellectual Property) and authenticate the owner of multimedia content. In this paper, the proposed watermarking algerian embeds watermark into multiple lower bitplanes of digital image. In the proposed algorithm, original and watermark images are decomposed to bitplanes each other and the watermarking operation is executed in the corresponded bitplane. The position of watermark image embedded in each bitplane is used to the watermarking key and executed in multiple lower bitplane which has no an influence on human visual recognition. Thus this algorithm can present watermark image to the multiple inherent patterns and needs small watermarking quantity. In the experiment, the author confirmed that it has high robustness against attacks of JPEG, MEDIAN and PSNR but it is weakness against attacks of NOISE, RNDDIST, ROT, SCALE, SS on spatial domain when a criterion PSNR of watermarked image is 40dB.

A Study on Robust and Precise Position Control of PMSM under Disturbance Variation (외란의 변화가 있는 PMSM의 강인하고 정밀한 위치 제어에 대한 연구)

  • Lee, Ik-Sun;Yeo, Won-Seok;Jung, Sung-Chul;Park, Keon-Ho;Ko, Jong-Sun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.11
    • /
    • pp.1423-1433
    • /
    • 2018
  • Recently, a permanent magnet synchronous motor of middle and small-capacity has high torque, high precision control and acceleration / deceleration characteristics. But existing control has several problems that include unpredictable disturbances and parameter changes in the high accuracy and rigidity control industry or nonlinear dynamic characteristics not considered in the driving part. In addition, in the drive method for the control of low-vibration and high-precision, the process of connecting the permanent magnet synchronous motor and the load may cause the response characteristic of the system to become very unstable, to cause vibration, and to overload the system. In order to solve these problems, various studies such as adaptive control, optimal control, robust control and artificial neural network have been actively conducted. In this paper, an incremental encoder of the permanent magnet synchronous motor is used to detect the position of the rotor. And the position of the detected rotor is used for low vibration and high precision position control. As the controller, we propose augmented state feedback control with a speed observer and first order deadbeat disturbance observer. The augmented state feedback controller performs control that the position of the rotor reaches the reference position quickly and precisely. The addition of the speed observer to this augmented state feedback controller compensates for the drop in speed response characteristics by using the previously calculated speed value for the control. The first order deadbeat disturbance observer performs control to reduce the vibration of the motor by compensating for the vibrating component or disturbance that the mechanism has. Since the deadbeat disturbance observer has a characteristic of being vulnerable to noise, it is supplemented by moving average filter method to reduce the influence of the noise. Thus, the new controller with the first order deadbeat disturbance observer can perform more robustness and precise the position control for the influence of large inertial load and natural frequency. The simulation stability and efficiency has been obtained through C language and Matlab Simulink. In addition, the experiment of actual 2.5[kW] permanent magnet synchronous motor was verified.