• Title/Summary/Keyword: Noise robustness

Search Result 565, Processing Time 0.033 seconds

Tracking Performance Improvement of a Magnetic Levitation Based Fine Manipulator (자기부상식 미동 매니퓰레이터의 추종성능 향상)

  • Choi, Kee-Bong;Kim, Soo-Hyun;Kwak, Yoon-Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.5 s.98
    • /
    • pp.58-65
    • /
    • 1999
  • A magnetic levitation system requires a robustness to overcome a dynamic instability due to disturbances. In this paper a robust controller for a magnetically levitated fine manipulator is presented. The proposed controller consists of following two parts: a model reference controller and an $H_{\infty}$ controller. First, the model reference control stabilizes the motion of the manipulator. Then, the motion of the manipulator follows that of the reference model. Second, the $H_{\infty}$ control minimizes errors generated from the model reference control due to noise and disturbance since the $H_{\infty}$ control is a kind of robust control. The experiments of position control and tracking control are carried out by use of the proposed controller under the conditions of free disturbances and forced disturbances. Also, the experiments using PID controller are carried out under the same conditions. The results from above two controllers are compared to investigate the control performances. As the results, it is observed that the proposed controller has similar position accuracy but better tracking performances comparing to the PID controller as well as good disturbance rejection effect due to the robust characteristics of the controller. In conclusion. it is verified that the proposed controller has the simple control structure, the good tracking performances and good disturbance rejection effect due to the robust characteristics of the controller.

  • PDF

Vicarious Calibration-based Robust Spectrum Measurement for Spectral Libraries Using a Hyperspectral Imaging System

  • Chi, Junhwa
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.4
    • /
    • pp.649-659
    • /
    • 2018
  • The aim of this study is to develop a protocol for obtaining spectral signals that are robust to varying lighting conditions, which are often found in the Polar regions, for creating a spectral library specific to those regions. Because hyperspectral image (HSI)-derived spectra are collected on the same scale as images, they can be directly associated with image data. However, it is challenging to find precise and robust spectra that can be used for a spectral library from images taken under different lighting conditions. Hence, this study proposes a new radiometric calibration protocol that incorporates radiometric targets with a traditional vicarious calibration approach to solve issues in image-based spectrum measurements. HSIs obtained by the proposed method under different illumination levels are visually uniform and do not include any artifacts such as stripes or random noise. The extracted spectra capture spectral characteristics such as reflectance curve shapes and absorption features better than those that have not been calibrated. The results are also validated quantitatively. The calibrated spectra are shown to be very robust to varying lighting conditions and hence are suitable for a spectral library specific to the Polar regions.

Detecting Copy-move Forgeries in Images Based on DCT and Main Transfer Vectors

  • Zhang, Zhi;Wang, Dongyan;Wang, Chengyou;Zhou, Xiao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.9
    • /
    • pp.4567-4587
    • /
    • 2017
  • With the growth of the Internet and the extensive applications of image editing software, it has become easier to manipulate digital images without leaving obvious traces. Copy-move is one of the most common techniques for image forgery. Image blind forensics is an effective technique for detecting tampered images. This paper proposes an improved copy-move forgery detection method based on the discrete cosine transform (DCT). The quantized DCT coefficients, which are feature representations of image blocks, are truncated using a truncation factor to reduce the feature dimensions. A method for judging whether two image blocks are similar is proposed to improve the accuracy of similarity judgments. The main transfer vectors whose frequencies exceed a threshold are found to locate the copied and pasted regions in forged images. Several experiments are conducted to test the practicability of the proposed algorithm using images from copy-move databases and to evaluate its robustness against post-processing methods such as additive white Gaussian noise (AWGN), Gaussian blurring, and JPEG compression. The results of experiments show that the proposed scheme effectively detects both copied region and pasted region of forged images and that it is robust to the post-processing methods mentioned above.

Optimization of 3D Triangular Mesh Watermarking Using ACO-Weber's Law

  • Narendra, Modigari;Valarmathi, M.L.;Anbarasi, L.Jani
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.10
    • /
    • pp.4042-4059
    • /
    • 2020
  • The development of new multimedia techniques such as 3D printing is increasingly attracting the public's attention towards 3D objects. An optimized robust and imperceptible watermarking method based on Ant Colony Optimization (ACO) and Weber Law is proposed for 3D polygonal models. The proposed approach partitions the host model into smaller sub meshes and generates a secret watermark from the sub meshes using Weber Law. ACO based optimized strength factor is identified for embedding the watermark. The secret watermark is embedded and extracted on the wavelet domain. The proposed scheme is robust against geometric and photometric attacks that overcomes the synchronization problem and authenticates the secret watermark from the distorted models. The primary characteristic of the proposed system is the flexibility achieved in data embedding capacity due to the optimized strength factor. Extensive simulation results shows enhanced performance of the recommended framework and robustness towards the most common attacks like geometric transformations, noise, cropping, mesh smoothening, and the combination of such attacks.

SVM-based Drone Sound Recognition using the Combination of HLA and WPT Techniques in Practical Noisy Environment

  • He, Yujing;Ahmad, Ishtiaq;Shi, Lin;Chang, KyungHi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.10
    • /
    • pp.5078-5094
    • /
    • 2019
  • In recent years, the development of drone technologies has promoted the widespread commercial application of drones. However, the ability of drone to carry explosives and other destructive materials may bring serious threats to public safety. In order to reduce these threats from illegal drones, acoustic feature extraction and classification technologies are introduced for drone sound identification. In this paper, we introduce the acoustic feature vector extraction method of harmonic line association (HLA), and subband power feature extraction based on wavelet packet transform (WPT). We propose a feature vector extraction method based on combined HLA and WPT to extract more sophisticated characteristics of sound. Moreover, to identify drone sounds, support vector machine (SVM) classification with the optimized parameter by genetic algorithm (GA) is employed based on the extracted feature vector. Four drones' sounds and other kinds of sounds existing in outdoor environment are used to evaluate the performance of the proposed method. The experimental results show that with the proposed method, identification probability can achieve up to 100 % in trials, and robustness against noise is also significantly improved.

아리랑 위성 2호의 시간동기

  • Kwon, Ki-Ho;Kim, Dae-Young;Chae, Tae-Byung;Lee, Jong-In
    • Aerospace Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.109-116
    • /
    • 2004
  • In a satellite time management system, the GPS-based clock synchronization technique[1] has the merits of precision time management by knowing the time difference or the error between the OBT(On Board Time) of the internal processors and GPS time every second. It can be realized employing the DPLL(Digital Phase Loop Lock) and FEP(Front End Processor) circuitry for the clock synchronization[2]. In this paper, a refined DPLL & FEP scheme is proposed to provide the precision, stability and robustness of the operation, which is to compensate the errors and noise of the GPS signal, and also to cope with the case when the GPS signal is lost due to several reasons. The simulation and HIL (Hardware In the Loop) test results using the FM(Flight Model) in the course of KOMPSAT-2(Korea Multi Purpose Satellite-2) design and development are illustrated to demonstrate the salient features of this methodology.

  • PDF

Robust Image Hashing for Tamper Detection Using Non-Negative Matrix Factorization

  • Tang, Zhenjun;Wang, Shuozhong;Zhang, Xinpeng;Wei, Weimin;Su, Shengjun
    • Journal of Ubiquitous Convergence Technology
    • /
    • v.2 no.1
    • /
    • pp.18-26
    • /
    • 2008
  • The invariance relation existing in the non-negative matrix factorization (NMF) is used for constructing robust image hashes in this work. The image is first re-scaled to a fixed size. Low-pass filtering is performed on the luminance component of the re-sized image to produce a normalized matrix. Entries in the normalized matrix are pseudo-randomly re-arranged under the control of a secret key to generate a secondary image. Non-negative matrix factorization is then performed on the secondary image. As the relation between most pairs of adjacent entries in the NMF's coefficient matrix is basically invariant to ordinary image processing, a coarse quantization scheme is devised to compress the extracted features contained in the coefficient matrix. The obtained binary elements are used to form the image hash after being scrambled based on another key. Similarity between hashes is measured by the Hamming distance. Experimental results show that the proposed scheme is robust against perceptually acceptable modifications to the image such as Gaussian filtering, moderate noise contamination, JPEG compression, re-scaling, and watermark embedding. Hashes of different images have very low collision probability. Tampering to local image areas can be detected by comparing the Hamming distance with a predetermined threshold, indicating the usefulness of the technique in digital forensics.

  • PDF

Improved Physical Layer Implementation of VANETs

  • Khan, Latif Ullah;Khattak, M. Irfan;Khan, Naeem;Khan, Atif Sardar;Shafi, M.
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.3
    • /
    • pp.142-152
    • /
    • 2014
  • Vehicular Ad-hoc Networks (VANETs) are comprised of wireless mobile nodes characterized by a randomly changing topology, high mobility, availability of geographic position, and fewer power constraints. Orthogonal Frequency Division Multiplexing (OFDM) is a promising candidate for the physical layer of VANET because of the inherent characteristics of the spectral efficiency and robustness to channel impairments. The susceptibility of OFDM to Inter-Carrier Interference (ICI) is a challenging issue. The high mobility of nodes in VANET causes higher Doppler shifts, which results in ICI in the OFDM system. In this paper, a frequency domain com-btype channel estimation was used to cancel out ICI. The channel frequency response at the pilot tones was estimated using a Least Square (LS) estimator. An efficient interpolation technique is required to estimate the channel at the data tones with low interpolation error. This paper proposes a robust interpolation technique to estimate the channel frequency response at the data subcarriers. The channel induced noise tended to degrade the Bit Error Rate (BER) performance of the system. Parallel concatenated Convolutional codes were used for error correction. At the decoding end, different decoding algorithms were considered for the component decoders of the iterative Turbo decoder. A performance and complexity comparison among the various decoding algorithms was also carried out.

Design of the Single-loop Voltage Controller for Arbitrary Waveform Generator (임의 파형 발생기를 위한 단일 루프 전압 제어기 설계)

  • Kim, Hyeon-Sik;Chee, Seung-Jun;Sul, Seung-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.1
    • /
    • pp.58-64
    • /
    • 2016
  • This study presents a design method for a single-loop voltage controller that is suitable for an arbitrary waveform generator (AWG). The voltage control algorithm of AWG should ensure high dynamic performance and should attain sufficient robustness to disturbances such as inverter nonlinearity, sensor noise, and load current. By analyzing the power circuit of AWG, control limitation and control target are presented to improve the dynamic performance of AWG. The proposed voltage control algorithm is composed of a single-loop output voltage control, an inverter current feedback term to improve transient response, and a load current feedforward term to prevent voltage distortion. The guideline for setting control gain is presented based on output filter parameters and digital time delay. The performance of the proposed algorithm is proven by experimental results through comparison with the conventional algorithm.

A novel multistage approach for structural model updating based on sensitivity ranking

  • Jiang, Yufeng;Li, Yingchao;Wang, Shuqing;Xu, Mingqiang
    • Smart Structures and Systems
    • /
    • v.25 no.6
    • /
    • pp.657-668
    • /
    • 2020
  • A novel multistage approach is developed for structural model updating based on sensitivity ranking of the selected updating parameters. Modal energy-based sensitivities are formulated, and maximum-normalized indices are designed for sensitivity ranking. Based on the ranking strategy, a multistage approach is proposed, where these parameters to be corrected with similar sensitivity levels are updated simultaneously at the same stage, and the complete procedure continues sequentially at several stages, from large to small, according to the predefined levels of the updating parameters. At every single stage, a previously developed cross model cross mode (CMCM) method is used for structural model updating. The effectiveness and robustness of the multistage approach are investigated by implementing it on an offshore structure, and the performances are compared with non-multistage approach using numerical and experimental vibration information. These results demonstrate that the multistage approach is more effective for structural model updating of offshore platform structures even with limited information and measured noise. These findings serve as a preliminary strategy for structural model updating of an offshore platform in service.