• Title/Summary/Keyword: Noise robustness

Search Result 565, Processing Time 0.026 seconds

Automotive Active Suspension Design Using LQG/LTR Method (LQG/LTR 설계방법을 이용한 자동차 현가장치 능동제어)

  • 황재혁;박봉철;백승호
    • Journal of KSNVE
    • /
    • v.3 no.4
    • /
    • pp.383-394
    • /
    • 1993
  • An automotive suspension system generally behaves like a low frequency band-pass filter(0.5 - 10 Hz). Passengers are very sensitive to this frequency range in terms of ride quality and road holding ability. In this paper, a LQG/ LTR controller is suggested to improve the ride quality and road holding ability in the specified frequency rage. It has been found by numerical simulation that the ride quality and road holding ability can be improved in the frequency ranges of 0.5 - 3.0 Hz and 0.3 - 2.1 Hz respectively. In addition, a new approach using root locus to evaluate the stability robustness of the active suspension system is studied. It is shown that the stability robustness of the LQG/LTR controller designed in this paper is improved, compared to the passive system.

  • PDF

Robust speed control for DC motor based on sliding mode with a disturbance observer (외란관측기를 갖는 SMC에 의한 DC모터의 강인한 속도제어)

  • JEONG, Tae-Young
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.55 no.4
    • /
    • pp.402-410
    • /
    • 2019
  • This paper deals with the disturbance observer (DOB) based sliding mode control (SMC) for a DC motor to control motor rotating speed precisely and to ensure strong robustness against disturbance including load torque and parameter variation. The reason of steady state error in speed on conventional SMC without DOB is analyzed in detail. Especially, the suggested DOB is designed to prevent measuring noise and harmonics caused by derivative operation on rotating speed. The control performance of the DOB based SMC is evaluated by the various simulations. The simulation results showed that the DOB based SMC had more robust performance than the SMC system without DOB. Especially, precise speed control was possible even though motor parameter variation and load torque was added to the system.

Sound Localization using Harmonic Structure in Active Perception System (능동 시청각 시스템에서 하모닉 정보를 이용한 음원의 위치추정)

  • Hwang, Min;Lim, Sung-Kil;Lee, Hyon-Soo
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.247-248
    • /
    • 2006
  • In this paper, we propose a new sound localization algorithm for an active perception system. In an active perception system, an acquired sound is mixed with the sound of motors. So a sound localization algorithm for an active perception system requires a robustness for the noise and a computational efficiency. The proposed localization algorithm can achieve robustness and efficiency to use only sub-band channels that are contained harmonic structure of the target speech.

  • PDF

Implementation of the adaptive ANC system improving robustness (강인성을 개선한 적응능동소음제어 시스템 구현)

  • Shin, Seung-Sik;Lee, Cheol-Ki;Oh, Hak-Jun;Koo, Choon-Keun;Chung, Chan-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.55-57
    • /
    • 1996
  • This paper presents an implementation of the adaptive ANC (Active Noise Control) system improving robustness. The system using the proposed algorithm shows a good performance of control, when the adaptive filter well does not work. We construct a real duct system and use DSP chip for experiment. Experimental results of the proposed algorithm prove the system to be superior than the conventional filtered-x LMS algorithm when the adaptive filter is out of order.

  • PDF

Structure-Preserving Mesh Simplification

  • Chen, Zhuo;Zheng, Xiaobin;Guan, Tao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.11
    • /
    • pp.4463-4482
    • /
    • 2020
  • Mesh model generated from 3D reconstruction usually comes with lots of noise, which challenges the performance and robustness of mesh simplification approaches. To overcome this problem, we present a novel method for mesh simplification which could preserve structure and improve the accuracy. Our algorithm considers both the planar structures and linear features. In the preprocessing step, it automatically detects a set of planar structures through an iterative diffusion approach based on Region Seed Growing algorithm; then robust linear features of the mesh model are extracted by exploiting image information and planar structures jointly; finally we simplify the mesh model with plane constraint QEM and linear feature preserving strategies. The proposed method can overcome the known problem that current simplification methods usually degrade the structural characteristics, especially when the decimation is extreme. Our experimental results demonstrate that the proposed method, compared to other simplification algorithms, can effectively improve the quality of mesh and yield an increased robustness on noisy input mesh.

An A2CL Algorithm based on Information Optimization Strategy for MMRS

  • Dong, Qianhui;Li, Yibing;Sun, Qian;Tian, Yuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.4
    • /
    • pp.1603-1623
    • /
    • 2020
  • Multiple Mobile Robots System (MMRS) has shown many attractive features in lots of real-world applications that motivate their rapid and wide diffusion. In MMRS, the Cooperative Localization (CL) is the basis and premise of its high-performance task. However, the statistical characteristics of the system noise should be already known in traditional CL algorithms, which is difficult to satisfy in actual MMRS because of the numerous of disturbances form the complex external environment. So the CL accuracy will be reduced. To solve this problem, an improved Adaptive Active Cooperative Localization (A2CL) algorithm based on information optimization strategy for MMRS is proposed in this manuscript. In this manuscript, an adaptive information fusion algorithm based on the variance component estimation under Extended Kalman filter (VCEKF) method for MMRS is introduced firstly to enhance the robustness and accuracy of information fusion by estimating the covariance matrix of the system noise or observation noise in real time. Besides, to decrease the effect of observation uncertainty on CL accuracy further, an observation optimization strategy based on information theory, the Model Predictive Control (MPC) strategy, is used here to maximize the information amount from observations. And semi-physical simulation experiments were carried out to verity the A2CL algorithm's performance finally. Results proved that the presented A2CL algorithm based on information optimization strategy for MMRS cannot only enhance the CL accuracy effectively but also have good robustness.

Implementation of Adaptive Noise Canceller Using Instantaneous Gain Control Algorithm (순시 이득 조절 알고리즘을 이용한 적응 잡음 제거기의 구현)

  • Lee, Jae-Kyun;Kim, Chun-Sik;Lee, Chae-Wook
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.6
    • /
    • pp.95-101
    • /
    • 2009
  • Among the adaptive noise cancellers (ANC), the least mean square (LMS) algorithm has probably become the most popular algorithm because of its robustness, good tracking properties, and simplicity of implementation. However, it has non-uniform convergence and a trade-off between the rate of convergence and excess mean square error (EMSE). To overcome these shortcomings, a number of variable step size least mean square (VSSLMS) algorithms have been researched for years. These LMS algorithms use a complex variable step method approach for rapid convergence but need high computational complexity. A variable step approach can impair the simplicity and robustness of the LMS algorithm. The proposed instantaneous gain control (IGC) algorithm uses the instantaneous gain value of the original signal and the noise signal. As a result, the IGC algorithm can reduce computational complexity and maintain better performance.

Performance Analysis of Correntropy-Based Blind Algorithms Robust to Impulsive Noise (충격성 잡음에 강인한 코렌트로피 기반 블라인드 알고리듬의 성능분석)

  • Kim, Namyong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.12
    • /
    • pp.2324-2330
    • /
    • 2015
  • In blind signal processing in impulsive noise environment the maximum cross-correntropy (MCC) algorithm shows superior performance compared to MSE-based algorithms. But optimum weight conditions of MCC algorithm and its properties related with robustness to impulsive noise have not been studied sufficiently. In this paper, through the analysis of the behavior of its optimum weight and the relationship with the MSE-based LMS algorithm, it is shown that the optimum weight of MCC and MSE-based LMS have an equal solution. Also the factor that keeps optimum weight of MCC undisturbed and stable under impulsive noise is proven to be the magnitude controlled input through simulation.

A Spectrum Sensing Scheme with Unknown Deterministic Signal Environment (예측 가능한 신호 환경에서의 스펙트럼 센싱 기법)

  • Kim, Jeong-Hoon;Asif, Iqbal;Khuandaga, Gulmira;Kwak, Kyung-Sup
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.3
    • /
    • pp.85-94
    • /
    • 2011
  • Spectrum sensing is one of the most important technologies in cognitive radio. Although many studies have considered energy detection technique as the spectrum sensing technique, noise variance in practical systems is difficult to estimate accurately. Thus, in the real system, the probability of false alarm will not be maintained constant. In this paper, with considering that the cognitive radio does not know the primary user's signal, we propose a new spectrum sensing scheme which can operate without the information of noise variance. Through simulations, we show that the proposed scheme can detect spectrum with the condition of unknown noise information and have robustness for the change of noise variance.

Model Tracking Dual Stochastic Controller Design Under Irregular Internal Noises

  • Lee Jong-Bok;Cho Yun-Hyun;Ji Tae-Young;Heo Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.652-657
    • /
    • 2006
  • Although many methods about the control of irregular external noise have been introduced and implemented, it is still necessary to design a controller that will be more effective and efficient methods to exclude for various noises. Accumulation of errors due to model tracking, internal noises (thermal noise, shot noise and 1/f noise) that come from elements such as resistor, diode and transistor etc. in the circuit system and numerical errors due to digital process often destabilize the system and reduce the system performance. New stochastic controller is adopted to remove those noises using conventional controller simultaneously. Design method of a model tracking dual controller is proposed to improve the stability of system while removing external and internal noises. In the study, design process of the model tracking dual stochastic controller is introduced that improves system performance and guarantees robustness under irregular internal noises which can be created internally. The model tracking dual stochastic controller utilizing F-P-K stochastic control technique developed earlier is implemented to reveal its performance via simulation.