The physical properties of biomaterials are important for their isolation and separation from body fluids. In particular, the precise evaluation of the multi-physical properties of single biomolecules is essential in that the correlation between physical and biological properties of specific biomolecule. However, the majority of scientific equipment, can only determine specific-physical properties of single nanoparticles, making the evaluation of the multi-physical properties difficult. The improvement of analytical techniques for the evaluation of multi-physical properties is therefore required in various research fields. In this study, we developed a motion-tracking algorithm to evaluate the multi-physical properties of single-nanoparticles by analyzing their behavior. We observed the Brownian motion and electric-field-induced drift of fluorescent nanoparticles injected in a microfluidic chip with two electrodes using confocal microscopy. The proposed algorithm is able to determine the size of the nanoparticles by i) removing the background noise from images, ii) tracking the motion of nanoparticles using the circular-Hough transform, iii) extracting the mean squared displacement (MSD) of the tracked nanoparticles, and iv) applying the MSD to the Stokes-Einstein equation. We compared the evaluated size of the nanoparticles with the size measured by SEM. We also determined the zeta-potential and surface-charge density of the nanoparticles using the extracted electrophoretic velocity and the Helmholtz-Smoluchowski equation. The proposed motion-tracking algorithm could be employed in various fields related to biomaterial analysis, such as exosome analysis.
본 논문에서는 주행 중인 차량의 차선 인식을 위해 4단계로 구성된 알고리즘을 제안한다. 첫 번째 단계에서는 관심영역 추출한다. 두 번째 단계에서는 신호 잡음을 제기하기 위해 중간 값 필터를 이용한다. 세 번째 단계에서는 입력되는 이미지의 배경과 전경의 두 클래스로 구분하기 위한 이진화 알고리즘을 수행한다. 마지막 단계에서는 이진화 과정 후에 남아 있는 노이즈나 불완전한 에지 등을 제거하여 선명한 차선을 얻기 위해 이미지 침식 알고리즘을 이용한다. 하지만 이러한 차선 인식 앍고리즘은 높은 계산량을 요구하여 실시간 처리가 어려운 실정이다. 따라서 본 논문에서는 멀티코어 아키텍처를 이용하여 실시간 차선이탈 감지 알고리즘을 병렬구현 한다. 또한, 차선이탈 감지 알고리즘을 위한 최적의 멀티코어 아키텍처의 구조를 탐색하기 위해 총 8가지의 서로 다른 프로세싱 엘리먼트 구조를 이용하여 실험하였고, 모의실험 결과 40×40의 프로세싱 엘리먼트 구조에서 최적의 성능, 에너지 효율 및 면적 효율을 보였다.
최근 자율주행 자동차는 운전자 지원 시스템에 딥러닝 기술을 적용하여 운전자에게 편의성을 제공하고 있지만, 딥러닝 기술이 적대적 회피 공격(adversarial evasion attacks)에 취약함이 밝혀졌다. 본 논문에서는 객체 인식 알고리즘인 YOLOv5(You Only Look Once)를 대상으로 MI-FGSM (Momentum Iterative-Fast Gradient Sign Method)를 포함한 5가지 적대적 회피 공격을 수행하였으며 객체 탐지 성능을 mAP(mean Average Precision)로 측정하였다. 특히, 본 논문에서는 모폴로지 연산을 적용하여 적대적 공격으로부터 노이즈를 제거하고 경계선을 추출하여 YOLO가 객체를 정상적 탐지할 수 있는 방안을 제안하고 이를 실험을 통해 그 성능을 분석하였다. 실험 결과, 적대적 공격을 수행했을 때 YOLO의 mAP가 최소 7.9%까지 떨어져 YOLO가 객체를 정확하게 탐지하지 못하는 것을 87.3%까지 성능을 개선하였다.
For gas hydrate exploration, long offset multichannel seismic data acquired using by the 4km streamer length in Ulleung basin of the East Sea. The dataset was processed to define the BSRs (Bottom Simulating Reflectors) and to estimate the amount of gas hydrates. Confirmation of the presence of Bottom Simulating reflectors (BSR) and investigation of its physical properties from seismic section are important for gas hydrate detection. Specially, faster interval velocity overlying slower interval velocity indicates the likely presences of gas hydrate above BSR and free gas underneath BSR. In consequence, estimation of correct interval velocities and analysis of their spatial variations are critical processes for gas hydrate detection using seismic reflection data. Using Dix's equation, Root Mean Square (RMS) velocities can be converted into interval velocities. However, it is not a proper way to investigate interval velocities above and below BSR considering the fact that RMS velocities have poor resolution and correctness and the assumption that interval velocities increase along the depth. Therefore, we incorporated Migration Velocity Analysis (MVA) software produced by Landmark CO. to estimate correct interval velocities in detail. MVA is a process to yield velocities of sediments between layers using Common Mid Point (CMP) gathered seismic data. The CMP gathered data for MVA should be produced after basic processing steps to enhance the signal to noise ratio of the first reflections. Prestack depth migrated section is produced using interval velocities and interval velocities are key parameters governing qualities of prestack depth migration section. Correctness of interval velocities can be examined by the presence of Residual Move Out (RMO) on CMP gathered data. If there is no RMO, peaks of primary reflection events are flat in horizontal direction for all offsets of Common Reflection Point (CRP) gathers and it proves that prestack depth migration is done with correct velocity field. Used method in this study, Tomographic inversion needs two initial input data. One is the dataset obtained from the results of preprocessing by removing multiples and noise and stacked partially. The other is the depth domain velocity model build by smoothing and editing the interval velocity converted from RMS velocity. After the three times iteration of tomography inversion, Optimum interval velocity field can be fixed. The conclusion of this study as follow, the final Interval velocity around the BSR decreased to 1400 m/s from 2500 m/s abruptly. BSR is showed about 200m depth under the seabottom
본 논문에서는 깨끗한 환경에서 녹음된 음성데이터와 채널환경에서 수집된 음성데이터의 화자확인 성능을 비교하였다. 채널데이터의 화자확인 성능을 향상시키기 위하여 채널환경에 강인한 특징 파라메타 및 전처리에 대해 연구하였다. 실험을 위한 음성 DB는 어구지시(text-prompted) 시스템을 고려하여 두 자리의 한국어 숫자음으로 구성하였다. 적용한 음성 특징은 LPCC(Linear Predictive Cepstral Coefficient), MFCC(Mel Frequency Cepstral Coefficient), PLP(Perceptually Linear Prediction), LSP(Line Spectrum Pair)이며, 채널 잡음을 제거하기 위한 전처리 과정으로는 음성신호에 대한 필터링을 적용하였다. 추출된 특징으로부터 채널의 영향을 제거 또는 보상하기 위해 cepstral weighting, CMS(Cepstral Mean Subtraction), RASTA(RelAtive SpecTrAl)를 적용하였다. 또한 각각의 특징 및 처리 방법에 대한 음성인식 성능을 제시함으로써 화자확인에서의 성능과 음성인식에서의 성능을 비교하였다. 적용한 음성 특징 및 처리 방법들에 대한 성능 평가를 위해 HTK(HMM Tool Kit) 2.0을 이용하였다. 남자, 여자 화자별로 임계값을 다르게 주는 방법으로 깨끗한 음성데이터와 채널 데이터에 대한 EER(Equal Error Rate)을 구하여 비교하였다. 실험결과 전처리 과정에서 대역통과 필터(150~3800Hz)를 적용하여 저대역 및 고대역의 채널 잡음을 제거하고, 이 신호로부터 MFCC를 추출하였을 때 EER 측면에서의 화자확인 성능이 가장 좋게 나타났다.
지상 관제소에 근무하는 항공관제사와 비행중인 항공기는 무전기를 이용하여 음성통신을 한다. 항공기에서 송신하는 음성신호는 전국에 있는 다수의 지상사이트에 동시에 수신된다. 이때 항공관제사는 항공기와의 거리, 속도, 기상상태, 안테나와 무전기 조정상태 등에 따라 다양한 품질의 음성신호를 수신하게 된다. 항공관제사는 매 순간 최적의 음성신호를 찾아 항공기와 최적의 상황에서 음성통신을 수행한다. 그러나, 현재는 입력된 음성의 음량(Gain)을 기준으로 CD(: Carrier Dectect)값이 우수하다고 판단되는 신호를 최적채널로 선택하지만, 이는 잡음이 통화품질에 미치는 영향을 고려하지 않기에 최적채널을 선택한다고 볼 수 없다. 본 논문을 통해 수신된 음성신호에서 잡음을 제거한 후 사용자가 최적채널을 선택할 수 있도록 수치화된 정보 및 개선된 음질의 음성신호를 제공할 수 있었다. 이를 이용하여 항공기 관제 또는 훈련감청시스템 운용 시 향상된 품질의 채널을 선택하여 안전사고 예방, 훈련 능력향상 등을 기대할 수 있다.
백색 LED(Light Emitting Diode:발광다이오드)는 고휘도, 향상된 안정성, 낮은 전력 소비, 그리고 긴 수명 등 유리한 특성을 제공한다. LED는 전기 신호를 광신호로 변환시킴으로써 광통신 실내 무선 광 조명실뿐만 아니라, 무선 광 통신 시스템에도 사용되는 전자 소자이다. 현재 이러한 백색 LED에 대해서 다양한 연구가 진행 중이며, 본 논문에서는 이러한 백색 LED를 이용한 VLC(Visible Light Communication:가시광통신)의 다중 접속 방식을 논의한다. 제안된 시스템에서는 현 VLC 시스템의 간섭을 줄이고, 수용량을 늘리기 위해 CDMA(Code Division Multiple Access:코드 분할 다중 접속)를 VLC시스템에 적용한다. 또한 AWGN(Additive White Gaussian Noise) 채널과 Diffuse 채널에서의 OOK(On-off keying) 변조와 BPSK 변조를 사용한 VLC-CDMA통신 시스템을 비교해봄으로써 OOK 변조의 우수성을 결과의 분석을 통하여 나타내었다. 그리고 다중경로환경에서와 AWGN환경에서의 BER을 비교함으로써 다중경로에 의한 간섭의 해결의 중요성을 검토한다. 다중 접속 방식으로 인한 ISI(Inter Symbol Interference)를 제거하여 시스템의 효율을 높이기 위해 Directed LOS(Line Of Sight)와 Diffuse Link를 가정하여 광 확산 코드인 OOC(Optical Orthogonal Code: 광 직교 코드)를 적용한 VLC-CDMA를 제안하고, 성능 분석을 제시한다.
저조도 환경에서 카메라로 영상을 획득하기 위해 일반적으로 가시광 플래시를 사용하거나 장노출 기법을 사용하게 된다. 그러나 가시광 플래시를 사용할 때 플래시 광에 의한 색 왜곡이나 적목 현상, 눈부심에 의한 거부감을 발생시킨다. 또한 장노출을 사용하게 되면 물체의 움직임에 의한 흔들림 현상이 발생하게 된다. 따라서 최근에는 이러한 단점을 극복하고, 저조도 환경에서 고화질의 영상을 획득하기 위하여 멀티 스팩트럴 플래시(Multi-spectral flash image)를 이용하여 영상을 획득하는 방법이 소개되었다. 이 방법은 가시광과 UV/IR스펙트럼의 다섯 채널을 이용하여 가시광영상의 색 정보와 UV/IR 스팩트럼 영상의 세부정보를 최적화하여 영상을 획득하는 방법이다. 하지만, 픽셀 기반의 최적화 과정에 있어 색 왜곡과 다른 잡음을 발생시키게 된다. 따라서 본 논문에서는 이러한 색 왜곡과 잡음을 개선하기 위해 영역 기반의 가중치 맵을 최적화 방법에 적용하여 색 왜곡을 개선하는 알고리즘을 제안한다. 먼저, 영상에 대하여 Canny 에지 검출 방법을 사용하여 영상의 윤곽을 검출하였다. 이를 가중치 맵으로 최적화방법에 적용함으로, 세부 영역에 대하여 UV/IR 플래시 영상의 정보에 가중치를 부여하고, 평탄한 영역에 대하여 가시광 영상의 색 정보를 가중치를 부여하여 색 왜곡을 개선하였다. 제안한 방법을 평가하기 위하여 실험을 통하여 제안한 방법과 이전방법을 비교하였고, 객관적 평가와 주관적 평가 모두 제안한 방법이 우수한 성능을 나타내었다.
기상과 시간의 제약을 받지 않고 영상을 획득할 수 있는 레이더 위성 영상은 오랫동안 홍수 탐지 분야에서 이용되어 왔다. 많은 연구들이 홍수를 효율적으로 탐지하기 위하여 다양한 기법들을 적용하였고 그 결과 홍수 지역의 탐지율은 비약적으로 상승하였다. 홍수는 침수피해를 유발하는 특성상 침수지와 비침수지의 경계 부분이 뚜렷하게 구분돼야하고 아주 세밀한 탐지가 가능해야한다. 이를 위해서는 레이더 자체의 해상도가 좋아야 할 뿐만 아니라 필터링 과정에서 해상도 저하를 최소화해야 한다. 레이더 위성의 해상도는 기술이 발전함에 따라 고해상도의 위성이 증가하고 있지만 필터링 기법을 달리하여 홍수 탐지의 정확도 및 효율성을 비교하여 홍수탐지에 적합한 필터링을 찾는 연구는 부족한 것이 현실이다. 본 연구에서는 Lee, Frost, NL-means(Non-Local means) 필터링을 위성레이더 영상에 적용하였고 필터링된 영상을 이용하여 홍수 지도를 생성한 뒤 각각의 결과를 비교하였다. Frost와 NL-means 필터는 Lee 필터에 비해 스펙클 노이즈를 저감하는데 효과적이었다. 하지만 Frost 필터의 경우에는 해상도의 저하가 심하다는 문제가 있었다. NL-means 필터는 다른 필터에 비해 shadow 현상을 효과적으로 제거하지 못하였고 이로 인해 잘못 탐지되는 픽셀이 존재한다는 문제가 있었다. 그럼에도 전체 영상의 픽셀 수에 비해 shadow 효과의 영향을 받아 오탐지되는 픽셀 수가 많지 않기 때문에 NL-means 필터를 이용한 경우가 가장 높은 홍수 탐지율을 보였다. 테스트 지역에서 필터링이 적용되지 않은 영상을 이용하여 홍수를 탐지한 경우 카파계수가 0.55로 나타났고 Lee, Frost, NL-means 필터를 적용한 경우 각각 0.64, 0.74, 0.81로 나타났다. 또한 NL-means 필터를 적용한 영상은 해상도의 변화가 거의 없는 상태에서 노이즈를 효과적으로 감소하였기 때문에 침수지와 비침수지의 경계를 가장 명확하게 구분할 수 있어 효과적으로 분석 결과를 도출하였다.
텍스트 데이터가 특정 범주에 속하는지 판별하는 문장 분류에서, 문장의 특징을 어떻게 표현하고 어떤 특징을 선택할 것인가는 분류기의 성능에 많은 영향을 미친다. 특징 선택의 목적은 차원을 축소하여도 데이터를 잘 설명할 수 있는 방안을 찾아내는 것이다. 다양한 방법이 제시되어 왔으며 Fisher Score나 정보 이득(Information Gain) 알고리즘 등을 통해 특징을 선택 하거나 문맥의 의미와 통사론적 정보를 가지는 Word2Vec 모델로 학습된 단어들을 벡터로 표현하여 차원을 축소하는 방안이 활발하게 연구되었다. 사전에 정의된 단어의 긍정 및 부정 점수에 따라 단어의 임베딩을 수정하는 방법 또한 시도하였다. 본 연구는 문장 분류 문제에 대해 선택적 단어 제거를 수행하고 임베딩을 적용하여 문장 분류 정확도를 향상시키는 방안을 제안한다. 텍스트 데이터에서 정보 이득 값이 낮은 단어들을 제거하고 단어 임베딩을 적용하는 방식과, 정보이득 값이 낮은 단어와 코사인 유사도가 높은 주변 단어를 추가로 선택하여 텍스트 데이터에서 제거하고 단어 임베딩을 재구성하는 방식이다. 본 연구에서 제안하는 방안을 수행함에 있어 데이터는 Amazon.com의 'Kindle' 제품에 대한 고객리뷰, IMDB의 영화리뷰, Yelp의 사용자 리뷰를 사용하였다. Amazon.com의 리뷰 데이터는 유용한 득표수가 5개 이상을 만족하고, 전체 득표 중 유용한 득표의 비율이 70% 이상인 리뷰에 대해 유용한 리뷰라고 판단하였다. Yelp의 경우는 유용한 득표수가 5개 이상인 리뷰 약 75만개 중 10만개를 무작위 추출하였다. 학습에 사용한 딥러닝 모델은 CNN, Attention-Based Bidirectional LSTM을 사용하였고, 단어 임베딩은 Word2Vec과 GloVe를 사용하였다. 단어 제거를 수행하지 않고 Word2Vec 및 GloVe 임베딩을 적용한 경우와 본 연구에서 제안하는 선택적으로 단어 제거를 수행하고 Word2Vec 임베딩을 적용한 경우를 비교하여 통계적 유의성을 검정하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.