• Title/Summary/Keyword: Noise radiation

Search Result 765, Processing Time 0.022 seconds

Thin Film Effects on Side Channel Signals (부 채널 신호에 대한 박막의 영향)

  • Sun, Y.B.
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.2
    • /
    • pp.51-56
    • /
    • 2013
  • Even if transmissions through normal channel between ubiquitous devices and terminal readers are encrypted, any extra sources of information retrieved from encrypting module can be exploited to figure out the key parameters, so called side channel attack. Since side channel attacks are based on statistical methods, making side channel signal weak or complex is the proper solution to prevent the attack. Among many countermeasures, shielding the electromagnetic signal and adding noise to the EM signal were examined by applying different thicknesses of thin films of ferroelectric (BTO) and conductors (copper and gold). As a test vehicle, chip antenna was utilized to see the change in radiation characteristics: return loss and gain. As a result, the ferroelectric BTO showed no recognizable effect on both shielding and adding noise. Cu thin film showed increasing shielding effect with thickness. Nanometer Au exhibited possibility in adding noise by widening of bandwidth and red shifting of resonating frequencies.

An Acoustical Analysis on the Transformer Enclosure in Power Plants (발전소 변압기 밀폐구조의 음향해석)

  • 이준신;김연환;손석만
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.244-249
    • /
    • 1997
  • The enclosure with a small opened area is extensively used in power plants to reduce the propagating noise from transformers. The radiation impedance associated with the location and width of the opened area, and the geometric configurations of internal acoustic field is very important to determine the basic acoustic characteristics of this partial enclosure. In this study, two-dimensional rectangular chambers with opened areas are investigated to examine the acoustic properties of the enclosure. The mode expansions of the physical variables defined on boundary surfaces are introduced to derive a simple algebraic equation. The acoustic characteristics can be easily predicted by this analytical approach, and the results well agree with physical grounds. Physical concepts as results of this work will be helpful to use the partial enclosure as a noise control element.

  • PDF

Development of Noise Analysis Software-'NASPFA' in Medium-to-high Frequency Ranges using Power Flow Boundary Element Method (파워흐름경계요소법을 이용한 중고주파 소음해석 소프트웨어 'NASPFA' 개발)

  • Lee, Ho-Won;Hong, Suk-Yoon;Kwon, Hyun-Wung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.949-953
    • /
    • 2004
  • In this paper, Power Flow Boundary Element Method(PFBEM) is studied as the numerical method for the vibration and sound predictions of complex structures in medium-to-high frequency ranges. NASPFA, the sound analysis software based on PFBEM, is developed and is used for the vibro-acoustic analysis. And also the developed software is used for the prediction of interior and exterior sound fields of vibrating structures and for the analysis of the multi-domain problems. To verify the accuracy, NASPFA is applied to the prediction of the energy distribution in the simple structures, and its results are compared with exact PFA solutions. And various practical vehicle systems are modeled and the distributions of the acoustical energy density are successfully predicted.

  • PDF

Multichannel Active Control of Honeycomb Trim Panels for Aircrafts (항공기용 하니콤 트림판넬의 다채널 능동제어)

  • Hong, Chin-Suk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.12 s.117
    • /
    • pp.1252-1261
    • /
    • 2006
  • This paper summarizes theoretical work on the multichannel decentralized feedback control of sound radiation from aircraft trim panels using piezoceramic actuators. The aircraft trim panels are generally honeycomb structures designed to meet the design requirement of low weight and high stiffness. They are resiliently-mounted to the fuselage for the passive reduction of noise transmission. It is motivated by the localization of reduction in vibration of single channel active trim panels. 12-channel decentralized feedback control systems are investigated in terms of the reduction of noise and vibration for three configurations of sensor actuator pairs. Local coupling of the closely-spaced sensor and actuator pairs was modeled using single degree of freedom systems. The multichannel control system is characterized using the state-space model. For the stability point of view, the relative stability or robustness is evaluated by comparing the real part of eigenvalues of the system matrix for the three configurations. The control performance is also evaluated and compared for the three configurations. It is found that the multichannel system can lead to the globalization of the reduction in vibration and radiated noise. It does not appear to yield a significant improvement in the vibration because of decreased gain margin. However, the reduction in the radiated noise is remarkably improved due to the variation of the vibration pattern with the actuation configurations.

Active noise control with the active muffler in automotive exhaust system (액티브 머플러를 이용한 자동차 배기계의 능동소음제어)

  • Kim, Heung-Seob;Hong, Jin-Seok;Oh, Jae-Eung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.11
    • /
    • pp.1837-1843
    • /
    • 1997
  • This study experimentally demonstrates the use of active muffler attached to the automotive exhaust system to reduce exhaust noise. For improving the signal to noise ratio in the process of estimation of secondary path transfer functions, the on-line algorithm that conventional inverse modeling is combined with adaptive line enhancer is used as the control algorithm. Active muffler is designed that the primary noise and the control sound are propagated as a plane wave in the outlet. Therefore, the error microphone could be placed out of the tail pipe center of a high temperature and the radiation noise to the outside could be reduced in the whole area around the outlet. The control experiment for reducing exhaust noise with active muffler is implemented during run-up at no load. From the experimental results presented, compared with the conventional off-line method, the proposed on-line method is capable to acquire a reduction of exhaust noise above 5 dB in overall sound power level.

Effect of Railway Noise Barrier Shape on Solar Radiation Energy Absorption (철도 방음벽의 형상에 따른 태양복사 에너지 흡수 특성 연구)

  • Jeong, Chan Ho;Lee, Jin Woon;Jang, Yong-Jun;Kim, Jooheon;Ryou, Hong Sun;Lee, Seong Hyuk
    • Journal of ILASS-Korea
    • /
    • v.18 no.4
    • /
    • pp.209-214
    • /
    • 2013
  • The present study aims to determine the optimized shape for the maximum electric energy production of building integrated photovoltaic system (BIPV) noise barrier through numerical analysis. The shape of BIPV noise barrier is one of the important factors in determining angle difference between direction vector of the sun and normal vector of the sound barrier surface. This study simulated numerically the flow and thermal fields for different angles in the range from $90^{\circ}$ to $180^{\circ}$, and from the results, the amount of isolation onto noise barrier surface was estimated along the angle between ground and top side of noise barrier. The commercial CFD code (Fluent V. 13.0) was used for calculation. It was found that the maximum amount of insolation per unit area was 19.6 MJ for $105^{\circ}$ case during a day in summer and was estimated 12.4 MJ in $150^{\circ}$ case during a day in winter. The results of the summer and winter cases showed the different tendency and this result would be useful in determining the appropriate shape of noise barrier which can be mounted under various circumstances.

A numerical study on the noise reduction methods of centrifugal impeller (원심형 임펠러의 저소음화에 대한 연구)

  • Jeon, Wan-Ho;Chung, Phil-Joong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.129-136
    • /
    • 2000
  • Centrifugal fans are widely used and the noise generated by these machines causes one of the most serious problems. In general, the centrifugal fan noise is often dominated by tones at BPF(blade passage frequency) and its higher harmonics. This is a consequence of the strong interaction between the flow discharged from the impeller and the cutoff in the casing. However, only a few researches have been carried out on predicting the noise because of the difficulty in obtaining detailed Information about the flow field and casing effects on noise radiation. The objective of this study is to develop a prediction method for the unsteady flow field and the acoustic pressure field of a centrifugal fan, and to calculate the effects of small vanes that are attached in original impeller - Splitter impeller. We assume that the impeller rotates with a constant angular velocity and the flow field around the impeller is incompressible and inviscid. So, a discrete vortex method (DVM) is used to model the centrifugal fan and to calculate the flow field. The force of each element on the blade is calculated by the unsteady Bernoulli equation. Lowson's method is used to predict the acoustic source. The splitter impeller changes the acoustic characteristics as well as performance. Two-splitter type impeller and splitter impeller which splitter locates in jet region are good for acoustic characteristics.

  • PDF

An Application of the Acoustic Similarity Law to Centrifugal Fan Noise by Numerical Calculation (수치기법을 이용한 원심홴 소음의 음향학적 상사법칙 적용)

  • 전완호;이덕주
    • Journal of KSNVE
    • /
    • v.9 no.5
    • /
    • pp.955-965
    • /
    • 1999
  • Centrifugal fans are widely used and the noise generated by the these machines causes one of the most serious problems. In general, the centrifugal fan noise is often dominated by tones at BPF(blade passage frequency) and its higher harmonics. This is a consequence of the strong interaction between the flow discharged form the impeller and the cutoff in the casing. However, only a few researches have been carried out on predicting the noise because of the difficulty in obtaining detailed information about the flow field and casing effects on noise radiation. The objective of this study is to understand the generation mechanism of sound and to develop a prediction method for the unsteady flow field and the acoustic pressure field of a centrifugal fan. We assume that the impeller rotates with a constant angular velocity and the flow field of the impeller is incompressible and inviscid. So, a discrete vortex method (DVM) is used to model the centrifugal by the unsteady Bernoulli equation. Lowson's method is used to predict the acoustic source. A centrifugal impeller and wedge introduced by Weidemann are used in the numerical calculation and the results are compared with the experimental data. Reasonable results are obtained not only for the peak frequencies but also for the amplitudes of the tonal sound.

  • PDF

A study of noise source identification on plate excited structure borne sound by acoustic intensity method (음향인텐시티법에 의한 고체진동 가진판의 소음원 검출에 관한 연구)

  • 오재응;김상헌;홍동표;이찬홍
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.43-55
    • /
    • 1986
  • In the studies of noise reduction, it is important to know the generation mechanism of noise in order to identify the noise source. The relation between the structural vibration and the radiated sound is very complex and so this paper deals with a simplified radiation model that was originally developed as a verification tool for the acoustic intensity measurement procedure. As the first step for the identification of the noise source, this study deals with the noise evaluation by measuring sound pressure. On the next step, the acoustic radiational pattern is determined by the acoustic intensity method and this paper established that the acoustic intensity method is effective on the detection of noise. In the study, furthermore, the method could be used to predict the change in the sound radiational characteristics with the attachment of absorber and could be used in determining the attachment position.

  • PDF

Vibration and Noise Analysis for Rotary Compressor in Medium-to-high Frequency Ranges (중고주파수 대역의 회전형 압축기 진동소음 해석)

  • Kwon, Hyun-Wung;Song, Jee-Hun;Hong, Suk-Yoon;Hwa, Jong-Hun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.11
    • /
    • pp.1033-1041
    • /
    • 2012
  • Power flow analysis(PFA) is introduced for solving the noise and vibration analysis of system structures in medium-to-high frequency ranges. The vibration analysis software, $PFADS_{C++}$ R4 based on power flow finite element method(PFFEM) and the noise prediction software, $NASPFA_{C++}$ R1 based on power flow boundary element method(PFBEM) are developed. In this paper, the coupled PFFE/PFBE method is used to investigate the vibration and radiated noise of the rotary compressor. PFFEM is employed to analyze the vibrational responses of the rotary compressor, and PFBEM is applied to analyze the radiation noise around rotary compressor. The vibrational energy of the structure is used as an acoustic intensity boundary condition of PFBEM. Numerical simulations are presented for the rotary compressor, and reliable results have been obtained.