• Title/Summary/Keyword: Noise isolation

Search Result 443, Processing Time 0.03 seconds

Effect of the Stiffness on the Performance of Impact Noise Isolation Pads of a Floor (바닥충격음 방지재의 재료강성 효과)

  • Lee, Dong-Hoon;Hwang, Yoon;Kang, Moon;Kim, Min-Bae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.425-430
    • /
    • 2000
  • This paper describes the effect of the pad stiffness on the noise reduction of impact noise isolation pads of a floor. And also a new semi-experimental method for measuring the impact noise isolation capability of a pad is introduced. The impact noise isolation pads made of wire-mesh, urethane-chip and foam rubber are used for measuring the stiffness, the vibrational insulation performance and the impact noise isolation capability. The correlation between the stiffness and impact noise isolation capability of pads is theoretically reviewed, and confirmed from the experimental results. For measuring the impact noise isolation capability of only an isolation pad, a semi-experimental method proposed in this study is more effective than the reverberation room method.

  • PDF

Improvement of Floor Impact Noise Measurement and Method for Rating Floor Impact Noise Isolation Performance (바닥충격음 측정 및 차음 평가의 방향)

  • Jeong, Jeong-Ho;Jeong, Yeong;Seo, Sang-Ho;Song, Hee-Soo;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.269-274
    • /
    • 2004
  • The aims of this study were to Investigate the floor impact noise isolation performance of floating floor with isolation materials and propose the improvement direction of floor impact noise measurement method and evaluation classes using impact ball. Reduction of light-weight impact sound pressure level can be achieved by the finishing materials, such as vinyl finishing material and wooden flooring with isolation materials. Floor impact noise Isolation material which satisfy the properties of the floor impact noise isolation materials cause resonance in the low frequency band and worsen heavy-weight impact sound pressure level. Heavy-weight impact sound level can be reduced by using noise reduction flooring, ceiling and increase of slab thickness. Strong impact force in low frequency bang below 63Hz of bang machine is not similar to human impact source and causes some problem in evaluating heavy-weight impact noise but heavy-weight impact noise measurement and evolution using impact ball which is very similar to human impact is more reliable than bang machine. Correction value on the background noise and sensitivity of residents should be considered on the floor impact noise evaluation classes.

  • PDF

Floor Noise Isolation System of the Residential Buildings Using Waste Rubbers (폐고무를 이용한 공공주택 층간소음차단 시스템)

  • Oh, Jeong Seok;Suh, Jaechan;Kim, Jin Kuk
    • Applied Chemistry for Engineering
    • /
    • v.28 no.4
    • /
    • pp.427-431
    • /
    • 2017
  • Recently, complaints of floor noise have been growing up with the rapid increase of the residential buildings. This demands the effective floor noise isolation system. Since the construction of high-rise the residential buildings will be increased even more in future, the noise isolation is a more important technology in the market. In this study, a new floor noise isolation panel (FNIP) was designed and manufactured using waste rubbers. The noise isolation was investigated at both laboratory and field conditions. Light and heavy weight shock wave showed 52 dB and 48 dB in the field test, respectively. The new system could reduce the total floor thickness by 22~42 mm.

A Study on Noise Transfer Path Analysi for Sound Improvement of Vehicle Using the Vibrational Power Flow (진동 동력 흐름 예측 기법을 이용한 소음 전달 경로 해석 및 차량의 실내소음저감에 관한 연구)

  • 이상권
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.2
    • /
    • pp.168-175
    • /
    • 2001
  • Reduction of structure-borne noise of the compartment in a car is an important task in automotive engineering. Transfer path analysis using vibroacoustic reciprocity technique or multiple path decomposition method has generally been used for structure-borne noise path analysis. These methods are useful in solving particular problem but do net quantify the effectiveness of vibration isolation of each isolator of a vehicle. To quantify the effectiveness of vibration isolation, the vibrational power flow has been used for a simple isolation system or a laboratory based isolation system. It is often difficult to apply the vibrational power flow technique to the complex isolation system like a car. In this paper, a simple equation is derived for calculation of the vibrational power flow of an isolation system with multiple isolators such as a car. It is successfully applied to not only quantifying the relative contributions of eighteen isolators but also reducing structure-borne noise of a passenger car. According to the results, the main contributor of eighteen isolators is the rear roll mount of an engine. The reduced structure-borne noise level is about 5dBA.

  • PDF

A Study on Improvement of Sound Quality of Vehicle Using the Vibrational Power Flow (진동 유동해석기법을 이용한 자동차 실내소음 저감 및 음질 개선)

  • Lee, Sang-Kwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.208-214
    • /
    • 2000
  • Reduction of structure-borne noise of the compartment in a car is an important task in automotive engineering. Transfer path analysis using vibroacoustic reciprocity technique or multiple path decomposition method has generally been used for structure-borne noise path analysis. These methods are useful in solving particular problem but do not quantify the effectiveness of vibration isolation of each isolator of a vehicle. To quantify the effectiveness of vibration isolation, the vibrational power flow has been used for a simple isolation system or a laboratory based isolation system. It is often difficult to apply the vibrational power flow technique to the complex isolation system like a car. In this paper, a simple equation is derived for calculation of the vibrational power flow of an isolation system with multiple isolators such as a car. It is successfully applied to not only quantifying the relative contributions of eighteen isolators but also reducing structure-borne noise of a passenger car. According to the results, the main contributor of eighteen isolators is the rear roll mount of an engine. The reduced structure-borne noise level is about 5dBA.

  • PDF

Multi-dimensional vibration/noise isolation by vibration power analysis (다차원 진동/소음 절연을 위한 진동 파워 이용법)

  • Kim, Gwang-Jun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.33-48
    • /
    • 2000
  • Limitations of the simple single degree of freedom vibration isolation theory in real applications are discussed and a theory of multi-dimensional vibration/noise isolation by power approach is introduced. Illustrations of the application to compressor of an air-conditioner are presented together with problems caused by approximations. Then possible sources of distortions in the vibration power estimation are looked into and some relevant research topics are suggested.

  • PDF

Design and Verification of a Large Reverberation Chamber's Isolation System (대형 잔향실의 방진 구조 설계 및 검증시험)

  • 김홍배;이득웅
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.11
    • /
    • pp.1066-1074
    • /
    • 2004
  • A vibration isolation system for a large reverberation chamber (1,228 $m^3$ and 1,000 ton) has been installed and verified. The reverberation chamber generates loud noise and induces high level of vibration while performing spacecraft acoustic reliability tests. The isolation system prevents vibration transfer from the chamber to the enclosure buildings. This paper describes design process and commissioning experiments of the system. Design criteria have been derived from rigid body model of the chamber. The stiffness of neoprene pads has been selected by employing finite element analysis of the reverberant chamber and isolation system. A total of 21 neoprene pads have been installed between the chamber and supporting Pedestals. A sand bag of 800kg was dropped on the chamber floor to measure the natural frequency of the isolation system. While 136.9 dB noise is generated in the chamber, absolute transmissibility of the isolation system has been measured. The measured natural frequency of the chamber is 10.2Hz, which is 80% of the predicted value. Overall transmissibility at working frequency range (25∼10.000 Hz) is less than -12.4 dB.

Dynamic Characteristics of the Vibration Isolation System for High Precision Processing Machinery (정밀가공장비용 면진시스템의 동특성)

  • 김영중;김병현
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.1115-1121
    • /
    • 2003
  • The vibration isolation table system for the high precision Processing machinery has been developed. The system uses air spring as its isolation elements. An investigation of the model and the test results showed that the diaphragm has a role in the mathematical model. The vibration levels at various floors in the laboratory were investigated during operating the large shaking table for the selection of optimum installation location. The vibration test on the designed system showed good isolation performances.

  • PDF

A Development of Vibration Isolation Technology for a Large Structure using Experimental Research (실험적 기법을 이용한 대형구조물 교통진동 차진기술 개발)

  • Ryu, B.J.;Lee, H.G.;Son, S.W.;Lee, G.S.;Han, H.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.537-542
    • /
    • 2006
  • This paper deals with the vibration isolation techniques for a large structure using experimental research. In the case of vibration isolation for the vicinity of a subway or a railroad station, most of vibration isolation techniques using isolation materials with high isolation efficiency only, have been applied. Therefore, the quantitative evaluation and design technologies are required for a vibration isolation of large structures. In this study, firstly, vibration characteristics due to train or subway are analyzed. Secondly, the performance of existing vibration isolation materials such as precision isolation material, elastomer is estimated through the experiments. Thirdly the performance of tire isolation material and its frame is tested and evaluated.

  • PDF

A Study on the Transmitted Energy Contribution Analysis of SUV Engine Mount by Vibration Power Flow Measurement (진동 파워흐름 측정을 통한 SUV용 엔진 마운트의 에너지 전달 기여도 분석에 관한 연구)

  • Kim, Su-Gon;Lee, Sang-Kwon;Kim, Sung-Jong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.4
    • /
    • pp.400-410
    • /
    • 2008
  • Reduction of structure-borne noise in the compartment of a car is an important task in automotive engineering. Many methods which analyze noise transfer path have been generally used for structure-borne noise. These methods are useful in solving particular problem but do not quantify the effectiveness of vibration isolation for each isolator of a vehicle. To quantify the effectiveness of vibration isolation, the vibrational power flow measurement has been used for a simple isolation system or a laboratory based isolation system. This paper identifies the transfer path of booming noise in a SUV. The powertrain used for test has a in-line 4cylinder engine and 5-shift auto-transmission. This powertrain is transversely supported by four isolators. We calculated the energy flow throughout four isolator by the measurement of power flow and the contribution of energy flow at each isolator.