• 제목/요약/키워드: Noise elimination algorithm

검색결과 81건 처리시간 0.026초

도로면 크랙영상의 노이즈 제거 알고리즘에 관한 연구 (A Study on the development of Algorithm for Removing Noise from Road Crack Image)

  • 김정렬;이세준;최현하;김영석;이준복;조문영
    • 한국건설관리학회:학술대회논문집
    • /
    • 한국건설관리학회 2002년도 학술대회지
    • /
    • pp.535-538
    • /
    • 2002
  • 크랙 실링 자동화 장비의 비젼 시스템은 도로면의 영상을 획득하고 이를 컴퓨터로 처리하여 도로면의 랙을 탐지, 분석 및 맵핑하는 역할을 수행하는 것이다. 그러나 실제 도로에는 크랙과 함께 오일 자국, 타이어 자국, 차선, 기 실링된 크랙 등의 수많은 노이즈들을 포함하고 있기 때문에 비젼 시스템을 통해 얻어진 노이즈가 포함된 도로면 영상을 기반으로 크랙을 자동으로 탐지하고 맵핑하는 것은 매우 어려우며 이러한 노이즈는 크랙의 정확한 탐지 및 맵핑의 커다란 방해 요소이기 때문에 이들의 제거가 선결되어야만 한다. 따라서 본 연구에서는 획득된 도로면 영상으로부터 크랙을 탐지하고 맵핑하기 이전에 실링되어질 크랙을 정확히 인지(recognition)하기 위한 노이즈 제거 알고리즘을 제안하고자 한다.

  • PDF

실시간 처리를 위한 2차 화상의 잡음 제거 전용 하드웨어 구성 (Dedicated hardware implementation for real time noise elimination of 2-valued image)

  • 박인정;이동찬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1988년도 전기.전자공학 학술대회 논문집
    • /
    • pp.243-246
    • /
    • 1988
  • A lot of time is required in order to the process of loop repeating the preprocessing operated in the software. Specially in the preprocessing, most of the time is used for the noise elimination such a software algorithm component of a noise elimination hardware, this can operate quickly the process.

  • PDF

랜덤 임펄스 잡음제거를 위한 캐스케이드 필터 알고리즘에 관한 연구 (A Study on Cascade Filter Algorithm for Random Valued Impulse Noise Elimination)

  • ;김남호
    • 한국정보통신학회논문지
    • /
    • 제16권3호
    • /
    • pp.598-604
    • /
    • 2012
  • 영상신호는 신호를 처리하는 과정에서 다양한 잡음에 의해 훼손되어지며, 이러한 신호를 복원하기 위한 많은 연구가 이루어지고 있다. 본 논문에서는 랜덤 임펄스 잡음을 제거하기 위한 캐스케이드 필터 알고리즘을 제안하였다. 알고리즘은 잡음검출과 잡음제거 등 두 과정으로 구성되었으며, 잡음검출을 위하여 마스크의 분산과 중앙화소에 의한 분산을 이용하였다. 또한, 잡음신호에 대해서 스위칭 self adaptive weighted median 필터로 처리한 후, 변형된 가중치 알고리즘을 적용하여 제거하였다. 제안한 알고리즘은 잡음신호만을 제거하고 비잡음신호는 그대로 보존하여, 우수한 에지 보존특성 및 잡음제거 능력을 나타내었다.

ST세그먼트 검출성능향상을 종속 적응필터의 세계 (Design of a Cascade Adaptive Filter for the Performance sn Detection of Segment)

  • 박광리;이경중
    • 대한의용생체공학회:의공학회지
    • /
    • 제16권4호
    • /
    • pp.517-524
    • /
    • 1995
  • This paper is a study on the design of the cascade adaptive filter (CAF) for baseline wandering elimination in order to enhance the performance of the detection of ST segments in ECG. The CAF using Least Mean Square (LMS) algorithm consists of two filters. The primary adaptive filter which has the cutoff frequency of 0.3Hz eliminates the baseline wandering in raw ECG The secondary adaptive filter removes the remnant baseline wandering which is not eliminated by the primary adaptive filter. The performance of the CAF was compared with the standard filter, the recursive filter, and the adaptive impulse correlated filter (AICF). As a result, the CAF showed a lower signal distortion than the standard filter and the AICF. Also, the CAF showed a better perf'ormance in noise elimination than the standard filter and the recursive filter. In conclusion, considering the characteristics of the noise elimination and the signal distortion, the CAF shows a better performance in the removal of the baseline wandering than the other three Otters and suggests the high performance in the detection of ST segment.

  • PDF

Modified Weighted Filter Algorithm for Noise Elimination In Mixed Noise Environments

  • ;김남호
    • 융합신호처리학회논문지
    • /
    • 제13권2호
    • /
    • pp.63-69
    • /
    • 2012
  • Noise is regarded as an unwanted component of the image because it significantly reduces image quality. And image is often corrupted by mixed noise. In this paper an efficient modified weighted filter algorithm which combines spatial weight and intensity weight is proposed for removing mixed noise. In the proposed method, the filtering mask is separated into the four sub-windows and the parameters of the weights are confirmed by calculating local standard deviation and the mean of four sub-windows' standard deviations. Considering the spatial information and intensity information, the proposed method has good performance on not only noise elimination but also preservation of details. Simulation results demonstrate that the proposed method performs better than conventional algorithms.

마커 자동 인식 향상 방법에 관한 연구 (The study for improve a method of Marker auto- identification)

  • 이현섭
    • 한국운동역학회지
    • /
    • 제13권1호
    • /
    • pp.23-38
    • /
    • 2003
  • The purpose of this study is to develop an improved marker auto-identification algorithm for reduce of data processing time through improve the efficiency of noise elimination and marker separation. The maker auto-identification algorithm was programming named KUMAS used Delphi language. For the study, various experiments were conducted for the verification of KUMAS. and compared two systems of established with the KUMAS. Four different motions - cycling, gait, rotation, and pendulum -, were selected and tested. Motions were filmed 30Hz frames rate per second. ${\chi}^2$ used for statistical analysis. Significant level were ${\alpha}=.05$. The test results were as follow. 1. Increased the success ratio of marker auto-identification. 2. The efficiency of marker auto-identification was remarkably improved through marker separation, noise elimination. 3. The marker auto-identification ability was improved in 2D-image plane include the 3D motion. 4. Significant different were found between KUMAS and B-SYS(established system) with non-input the artificial noise frames, input the artificial noise frames and total frames.

탐색영역의 중요도에 따라 적응적인 탐색을 이용한 고속 움직임 예측 알고리즘 (A Fast Motion Estimation Algorithm using Adaptive Search According to Importance of Search Ranges)

  • 김태환;김종남;정신일
    • 한국멀티미디어학회논문지
    • /
    • 제18권4호
    • /
    • pp.437-442
    • /
    • 2015
  • Voice activity detection is very important process that voice activity separated form noisy speech signal for speech enhance. Over the past few years, many studies have been made on voice activity detection, but it has poor performance in low signal to noise ratio environment or fickle noise such as car noise. In this paper, it proposed new voice activity detection algorithm using ensemble variance based on wavelet band entropy and soft thresholding method. We conduct a survey in a lot of signal to noise ratio environment of car noise to evaluate performance of the proposed algorithm and confirmed performance of the proposed algorithm.

지반형상 3차원 모델링을 위한 스테레오 비전 영상의 노이즈 제거 알고리즘 개발 (Development of the Noise Elimination Algorithm of Stereo-Vision Images for 3D Terrain Modeling)

  • 유현석;김영석;한승우
    • 한국건설관리학회논문집
    • /
    • 제10권2호
    • /
    • pp.145-154
    • /
    • 2009
  • 작업환경 주변의 사물(target object)을 자동으로 인식하고 그 결과를 효과적으로 모델링하는 기술은 작업 품질, 생산성 등 개발 장비의 성능(performance)에도 지대한 영향을 미치게 되므로 이는 건설자동화 장비를 개발함에 있어 필수적으로 요구되는 핵심 요소기술이다. 현재 국내에서는 2006년부터 지능형 굴삭 로봇(intelligent robotic excavator)의 개발을 위하여 토공 작업환경을 대상으로 스테레오 비전을 활용하여 굴삭 로봇 주변 영역의 지반형상을 3차원으로 모델링하기 위한 기술을 개발하고 있다. 본 연구의 목적은 실제 토공 작업환경을 3차원으로 모델링하는 과정에서 필연적으로 발생되는 스테레오 매칭 노이즈를 효과적으로 제거하기 위하여 다양한 토공작업 환경 요소가 포함된 스테레오 영상을 수집하고 토공 작업 환경의 3차원 모델링에 적합한 노이즈 제거 알고리즘을 제안하는 것이다. 본 연구를 통해 개발된 디지털 영상처리 기술은 토공 작업환경을 대상으로 주변을 자동 인식하고 추출하고자 하는 관심의 대상을 3차원으로 모델링해야 하는 굴삭기 이외의 자동화 장비 개발에 있어서도 응용성이 매우 클 것으로 기대된다.

Reconstruction and Elimination of Optical Microscopic Background Using Surface Fitting Method

  • Kim Hak-Kyeong;Kim Dong-Kyu;Jeong Nam-Soo;Lee Myung-Suk;Kim Sang-Bong
    • Fisheries and Aquatic Sciences
    • /
    • 제4권1호
    • /
    • pp.10-17
    • /
    • 2001
  • One serious problem among the troubles to identify objects in an optical microscopic image is contour background due to non-uniform light source and various transparency of samples. To solve this problem, this paper proposed an elimination method of the contour background and compensation technique as follows. First, Otsu's optimal thresholding method extracts pixels representing background. Second, bilinear interpolation finds non-deterministic background pixels among the sampled pixels. Third, the 2D cubic fitting method composes surface function from pivoted background pixels. Fourth, reconstruction procedure makes a contour image from the surface function. Finally, elimination procedure subtracts the approximated background from the original image. To prove the effectiveness of the proposed algorithm, this algorithm is applied to the yeast Zygosaccharomyces rouxii and ammonia-oxidizing bacteria Acinetobacter sp. Labeling by this proposed method can remove some noise and is more exact than labeling by only Otsu's method. Futhermore, we show that it is more effective for the reduction of noise.

  • PDF

잡음 밀도에 따라 가변 마스크를 적용한 Salt and Pepper 잡음 제거에 관한 연구 (A Study on Removal of Salt and Pepper Noise using Deformable Masks Depending on the Noise Density)

  • 홍상우;김남호
    • 한국정보통신학회논문지
    • /
    • 제19권9호
    • /
    • pp.2173-2179
    • /
    • 2015
  • 디지털 시대를 맞이하여 영상 처리는 TV, 카메라, 스마트폰 등과 같은 다양한 매체에서 활용되고 있다. 일반적으로 영상 데이터를 분석, 인식, 처리하는 과정에서 여러가지 원인에 의해 salt and pepper 잡음이 발생한다. 이러한 잡음을 제거하기 위한 대표적인 필터는 SMF, CWMF, AMF 등이 있다. 기존의 필터들은 잡음 밀도가 높은 영역에서 에지 보존 및 잡음 제거 특성이 미흡하다. 따라서 본 논문은 salt and pepper 잡음을 효과적으로 제거하기 위하여, 잡음밀도에 따라 마스크 크기를 가변하여 처리하는 알고리즘을 제안하였다. 그리고 제안한 방법의 성능을 평가하기 위해 PSNR을 사용하여 기존의 방법들과 비교하였다.