• Title/Summary/Keyword: Noise Sources

Search Result 1,196, Processing Time 0.026 seconds

Noise Control of an Air Intake system for a Four-Cylinder Engine (4기통 엔진의 흡기계 소음제어)

  • 김태정;홍상범
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.77-83
    • /
    • 1996
  • Noise control process of an air intake system for a four-cylinder automotive engine is described. The objective of the process is reduction of induction noise without losing engine performance and changing package layout. The theory and feasibility for noise control elements are also discussed. In general, four-cylinder engines generate a lower frequency induction noise around 80-150 Hz (2400-4500 rpm) and firing frequency, valve impact noise are the main sources. In this paper, the most problematic noise source is identified first and better position of air inlet is selected between inside-fender and out-of-fender layouts. Secondly, the possible noise control approach and CAE analysis results are compared to those from speaker excitation tests. Finally, the effect of the controlled intake system after the installation to an automobile is presented.

  • PDF

Evaluation and countermeasure for Environmental Noise during Plant Commissioning Process in Thermal Power Plant (화력발전소 시운전시 인근에 미치는 소음영향 및 대책)

  • Kim, Yeon-Whan;Koo, Jae-Raeyang;Kim, Hee-Soo;Bae, Yong-Chae;Lee, Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.897-902
    • /
    • 2001
  • This paper describes the evaluation of noise influence for residental and boundary areas in 75MW thermal power plant. It includes the measurements of noise level around the boundary area of the plant, identification of noise propagating path, and discussion on the measures. Noise assessments are carried out based on the ISO 3744, ISO 9613-1 and ISO 9613-2 to predict the noise distribution of specific locations from the noise sources such as power transformers, flash vent-pipe, I.D.fan, and stack. It is identified the vent-pipe of flash tank in thermal power plant as the root cause of the environmental noise during the plant commissioning process.

  • PDF

Experiments on the noise source identification from a moving vehicle (이동하는 운송체의 외부소음원 측정에 관한 실험적 연구)

  • Hong, Suk-Ho;Choi, Jong-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.238-243
    • /
    • 2008
  • Several experimental techniques for identifying the noise sources distributed over a moving vehicle have been developed recently and are used to design a low noise vehicle. The beamforming method, which uses phase information between several microphones to localize the source position, is proved to be one of the promising techniques applicable even under complicated test environments. In this study a beamforming algorithm is developed and applied to measure the dominant noise sources on a passenger car passing by. Unlike the acoustic signals from a stationary noise source, the sound generated from a moving source is distorted due to the Doppler effects. The information about the speed and relative position of the vehicle are used to eliminate the Doppler effects from the measured acoustic signal by using a de-Dopplerization algorithm. The noise generated from a moving vehicle can be grouped in many ways, however, tire noise and the noise generated from the engine are distinguishable at the speeds being tested.

Active Window system based on Finite Thickness Window Model (유한 두께 창문 모델을 적용한 능동 소음제어 창문)

  • Kwon, Byoung-Ho;Park, Young-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.763-768
    • /
    • 2012
  • Active window system which can reduce the environmental noises, such as traffic noise and construction noise, from an open window into a room was proposed in the previous works. The key idea of the proposed active window system was that the control sources are approximately collocated with the primary noise source in terms of the acoustic power for global noise reduction throughout the interior room. Moreover, because it is important not to intrude into the living space in the building environment, no error sensors were used and an open-loop control method using control sources at the window frame and the reference sensors outside the room was used for the proposed system. The open-loop control gain was calculated by the interior room model assumed as the semi-infinite space, and the interior sound field was estimated by Rayleigh integral equation under the baffled window model assumption. However, windows with a finite thickness should were considered for the calculation of the open-loop control gain of the active window system since these are representative of most window cases. Therefore, the finite thickness window model based on the Sgard's model was derived and the open-loop control gain using the interior sound field estimated by that model was calculated for active window system. To compare the performance of these two models, a scale-model experiment was performed in an anechoic chamber according to noise source directions. Experimental results showed that the performance for the thickness window model is better than the baffled window model as the angle with respect to the perpendicular direction is larger.

  • PDF

Analysis of Underwater Noise in the North Sea (북해에서의 수중소음분석)

  • 윤갑동
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.21 no.1
    • /
    • pp.1-6
    • /
    • 1985
  • The underwater noise was measured by piezo-electric hydrophones submerged in the water at three different depths. The signals were led through connection cables to preamplifiers, and recorded simultaneously by a four channel tape recorder, and analysed by high resolution signal analyzer. The measurements were carried out at the fjord Skossvassen in archipelago off Bergen and at the cost of Norway in the North Sea. The results of the measurements and the analysis showed that the underwater noise consists of a steady broad band noise superposed by intermittent pulse of various strength. The noise levels measured in fjord Skossvassen indicated that they were generally higher at the shallow (10m) hydrophone than at the deeper hydrophone (25m, 50m). This tendency was not very distinct, however, the noise sources are close to the surface. The underwater noise spectrums measured in the open sea of Norway showed almost similar situation in all layers. This tendency showed that the noise sources are not close to the surface but they are far away from the measuring positions.

  • PDF

Excess Noise Map for Environmental Standard and Assessment of Noise with Using GIS Data (GIS 자료를 이용한 초과소음지도 작성과 소음 평가)

  • Ko, Joon-Hee;Lee, Byung-Chan;Lim, Jae-Serk;Park, Su-Jin;Chang, Seo-Il
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.10
    • /
    • pp.1075-1082
    • /
    • 2009
  • Using GIS data of C-si as basic data when making noise map of road traffic, we estimated exactly the noise excess areas and consequently suggested the population and the area exposed to road traffic noise accurately. We made 3D noise map to assess regional distribution of noise quantitatively. The noise map consists of noise prediction model based on data base such as traffic volume and speed changes for estimating quantitatively the noise and 3D urban space model which includes locations of noise sources, 3D buildings, topography and roads. We made noise standard map according to land use conditions and compared this map to road traffic noise map, and consequently made excess noise map. Using excess noise map, we assessed areas which exceed environmental noise level standards and noise guidelines quantitatively and effectively through GIS spatial analysis, and consequently more accurate noise exposed area and noise exposed population could be estimated. To show buildings' outer walls noise exposure, we analyzed 3D urban noise distributions using 3D-analysis of GIS.

Low Noise Vacuum Cleaner Design (저소음 청소기 개발)

  • Joo, Jae-Man;Lee, Jun-Hwa;Hong, Seun-Gee;Oh, Jang-Keun;Song, Hwa-Gyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.939-942
    • /
    • 2007
  • Vacuum cleaner is a close life product that can remove various dusts from our surroundings. However well vacuum cleaner clean our environments, many people are looking away from it, due to its loud noise. Its noise causes a big trouble in the usual life, for example, catch calls, TV watching and discussing etc. To reduce these inconveniences, noise reduction methods and systematic design of low noise vacuum cleaner are studied in this paper. At first, sound quality investigation is performed to get the noise level and quality that make people TV watching and catch calls available. Based on the European and domestic customer SQ survey result, sound power, peak noise level and target sound spectrum guideline are studied and introduced. As a second, precise product sound spectrums are designed into each part based on the sound quality result. Fan-motor, brush, mainbody, cyclone spectrums are decided to get the final target sound based on the contribution level. Fan-motor is the major noise source of vacuum cleaner. Specially, its peak sound, RPM peak and BPF Peak, cause the people nervous. To reduce these peak sounds, high rotating impeller and diffuser are focused due to its interaction. A lot of experimental and numerical tests, operation points are investigated and optimization of flow path area between diffusers is performed. As a bagless device, cyclones are one of the major noise sources of vacuum cleaner. To reduce its noise, previous research is used and adopted well. Brush is the most difficult part to reduce noise. Its noise sources are all comes from aero-acoustic phenomena. Numerical analysis helps the understanding of flow structure and pattern, and a lot of experimental test are performed to reduce the noise. Gaps between the carpet and brush are optimized and flow paths are re-designed to lower the noise. Reduction is performed with keeping the cleaning efficiency and handling power together and much reduction of noise is acquired. With all above parts, main-body design is studied. To do a systematic design, configuration design developments technique is introduced from airplane design and evolved with each component design. As a first configuration, fan-motor installation position is investigated and 10 configuration ideas are developed and tested. As a second step, reduced size and compressed configuration candidates are tested and evaluated by a lot of major factor. Noise, power, mass production availability, size, flow path are evaluated together. If noise reduction configuration results in other performance degrade, the noise reduction configuration is ineffective. As a third configuration, cyclones are introduced and the size is reduced one more time and fourth, fifth, sixth, seventh configuration are evolved with size and design image with noise and other performance indexes. Finally we can get a overall much noise level reduction configuration. All above investigations are adopted into vacuum cleaner design and final customer satisfaction tests in Europe are performed. 1st grade sound quality and lowest noise level of bagless vacuum cleaner are achieved.

  • PDF