• 제목/요약/키워드: Noise Sources

Search Result 1,196, Processing Time 0.029 seconds

A Study on Contribution Analysis using Operational Transfer Path Analysis based on the Correlation between Subjective Evaluation and Zwicker's Sound Quality Index for Sound Quality of Forklifts (지게차의 주관적 음질평가와 Zwicker 음질지수의 상관관계 및 전달경로분석법(OTPA)을 활용한 음질 기여도 분석)

  • Kim, Beom Soo;Yang, Soon Yong
    • Journal of Drive and Control
    • /
    • v.13 no.2
    • /
    • pp.19-25
    • /
    • 2016
  • Recently, drivers have begun to regard comfort in the cabin as one of the most important factors in construction equipment like forklifts. Accordingly, it has become more important to design a forklift cabin with a better sound quality as well as lower sound level, which can make a driver more comfortable. In this paper, the correlation between subjective evaluation and Zwicker's sound quality index was analyzed through a blind test by a few workers in forklifts and other construction equipment in several countries. Correlation analysis showed that Loudness and Sharpness were ranked in sequence, and tendencies were different from country to country. Also, contribution analysis for Loudness and Sharpness using operational transfer path analysis (OTPA), which is widely used in the field of noise, vibration, and harshness (NVH), was performed. However, Loudness and Sharpness cannot be used with OTPA directly because there are no linear relationships between the sources and receivers. In this paper, both are calculated by applying the DIN 45631 method with a contribution rate (%) of 1/3 Octave Sound Pressure Level by OTPA method in addition to considering spectral masking.

High-Performance Compton SPECT Using Both Photoelectric and Compton Scattering Events

  • Lee, Taewoong;Kim, Younghak;Lee, Wonho
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1393-1398
    • /
    • 2018
  • In conventional single-photon emission computed tomography (SPECT), only the photoelectric events in the detectors are used for image reconstruction. However, if the $^{131}I$ isotope, which emits high-energy radiations (364, 637, and 723 keV), is used in nuclear medicine, both photoelectric and Compton scattering events can be used for image reconstruction. The purpose of our work is to perform simulations for Compton SPECT by using the Geant4 application for tomographic emission (GATE). The performance of Compton SPECT is evaluated and compared with that of conventional SPECT. The Compton SPECT unit has an area of $12cm{\times}12cm$ with four gantry heads. Each head is composed of a 2-cm tungsten collimator and a $40{\times}40$ array of CdZnTe (CZT) crystals with a $3{\times}3mm^2$ area and a 6-mm thickness. Compton SPECT can use not only the photoelectric effect but also the Compton scattering effect for image reconstruction. The correct sequential order of the interactions used for image reconstruction is determined using the angular resolution measurement (ARM) method and the energies deposited in each detector. In all the results of simulations using spherical volume sources of various diameters, the reconstructed images of Compton SPECT show higher signal-to-noise ratios (SNRs) without degradation of the image resolution when compared to those of conventional SPECT because the effective count for image reconstruction is higher. For a Derenzo-like phantom, the reconstructed images for different modalities are compared by visual inspection and by using their projected histograms in the X-direction of the reconstructed images.

The Error of the Method of Angular Sections of Microwave Sounding of Natural Environments in the System of Geoecological Monitoring

  • Fedoseeva, E.V.;Kuzichkin, O. R.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.47-53
    • /
    • 2021
  • The article deals with the problems of application of microwave methods in systems of geoecological monitoring of natural environments and resources of the agro-industrial complex. It is noted that the methods of microwave radiometry make it possible, by the power of the measured intrinsic radio-thermal radiation of the atmosphere, when solving inverse problems using empirical and semi-empirical models, to determine such parameters of the atmosphere as thermodynamic temperature, humidity, water content, moisture content, precipitation intensity, and the presence of different fractions of clouds.In addition to assessing the meteorological parameters of the atmosphere and the geophysical parameters of the underlying surface based on the data of microwave radiometric measurements, it is possible to promptly detect and study pollution of both the atmosphere and the earth's surface. A technique has been developed for the analysis of sources of measurement error and their numerical evaluation, because they have a significant effect on the accuracy of solving inverse problems of reconstructing the values of the physical parameters of the probed media.To analyze the degree of influence of the limited spatial selectivity of the antenna of the microwave radiometric system on the measurement error, we calculated the relative measurement error of the ratio of radio brightness contrasts in two angular directions. It has been determined that in the system of geoecological monitoring of natural environments, the effect of background noise is maximal with small changes in the radiobrightness temperature during angular scanning and high sensitivity of the receiving equipment.

Classification of Radio Signals Using Wavelet Transform Based CNN (웨이블릿 변환 기반 CNN을 활용한 무선 신호 분류)

  • Song, Minsuk;Lim, Jaesung;Lee, Minwoo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.8
    • /
    • pp.1222-1230
    • /
    • 2022
  • As the number of signal sources with low detectability by using various modulation techniques increases, research to classify signal modulation methods is steadily progressing. Recently, a Convolutional Neural Network (CNN) deep learning technique using FFT as a preprocessing process has been proposed to improve the performance of received signal classification in signal interference or noise environments. However, due to the characteristics of the FFT in which the window is fixed, it is not possible to accurately classify the change over time of the detection signal. Therefore, in this paper, we propose a CNN model that has high resolution in the time domain and frequency domain and uses wavelet transform as a preprocessing process that can express various types of signals simultaneously in time and frequency domains. It has been demonstrated that the proposed wavelet transform method through simulation shows superior performance regardless of the SNR change in terms of accuracy and learning speed compared to the FFT transform method, and shows a greater difference, especially when the SNR is low.

Effect of Speech Degradation and Listening Effort in Reverberating and Noisy Environments Given N400 Responses

  • Kyong, Jeong-Sug;Kwak, Chanbeom;Han, Woojae;Suh, Myung-Whan;Kim, Jinsook
    • Korean Journal of Audiology
    • /
    • v.24 no.3
    • /
    • pp.119-126
    • /
    • 2020
  • Background and Objectives: In distracting listening conditions, individuals need to pay extra attention to selectively listen to the target sounds. To investigate the amount of listening effort required in reverberating and noisy backgrounds, a semantic mismatch was examined. Subjects and Methods: Electroencephalography was performed in 18 voluntary healthy participants using a 64-channel system to obtain N400 latencies. They were asked to listen to sounds and see letters in 2 reverberated×2 noisy paradigms (i.e., Q-0 ms, Q-2000 ms, 3 dB-0 ms, and 3 dB-2000 ms). With auditory-visual pairings, the participants were required to answer whether the auditory primes and letter targets did or did not match. Results: Q-0 ms revealed the shortest N400 latency, whereas the latency was significantly increased at 3 dB-2000 ms. Further, Q-2000 ms showed approximately a 47 ms delayed latency compared to 3 dB-0 ms. Interestingly, the presence of reverberation significantly increased N400 latencies. Under the distracting conditions, both noise and reverberation involved stronger frontal activation. Conclusions: The current distracting listening conditions could interrupt the semantic mismatch processing in the brain. The presence of reverberation, specifically a 2000 ms delay, necessitates additional mental effort, as evidenced in the delayed N400 latency and the involvement of the frontal sources in this study.

Effect of Speech Degradation and Listening Effort in Reverberating and Noisy Environments Given N400 Responses

  • Kyong, Jeong-Sug;Kwak, Chanbeom;Han, Woojae;Suh, Myung-Whan;Kim, Jinsook
    • Journal of Audiology & Otology
    • /
    • v.24 no.3
    • /
    • pp.119-126
    • /
    • 2020
  • Background and Objectives: In distracting listening conditions, individuals need to pay extra attention to selectively listen to the target sounds. To investigate the amount of listening effort required in reverberating and noisy backgrounds, a semantic mismatch was examined. Subjects and Methods: Electroencephalography was performed in 18 voluntary healthy participants using a 64-channel system to obtain N400 latencies. They were asked to listen to sounds and see letters in 2 reverberated×2 noisy paradigms (i.e., Q-0 ms, Q-2000 ms, 3 dB-0 ms, and 3 dB-2000 ms). With auditory-visual pairings, the participants were required to answer whether the auditory primes and letter targets did or did not match. Results: Q-0 ms revealed the shortest N400 latency, whereas the latency was significantly increased at 3 dB-2000 ms. Further, Q-2000 ms showed approximately a 47 ms delayed latency compared to 3 dB-0 ms. Interestingly, the presence of reverberation significantly increased N400 latencies. Under the distracting conditions, both noise and reverberation involved stronger frontal activation. Conclusions: The current distracting listening conditions could interrupt the semantic mismatch processing in the brain. The presence of reverberation, specifically a 2000 ms delay, necessitates additional mental effort, as evidenced in the delayed N400 latency and the involvement of the frontal sources in this study.

Analysis of Characteristics of NPS Runoff and Pollution Contribution Rate in Songya-stream Watershed (송야천 유역의 비점오염물질 유출 특성 및 오염기여율 분석)

  • Kang Taeseong;Yu Nayeong;Shin Minhwan;Lim Kyoungjae;Park Minji;Park Baekyung;Kim Jonggun
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.4
    • /
    • pp.316-328
    • /
    • 2023
  • In this study, the characteristics of nonpoint pollutant outflow and contribution rate of pollution in Songya-stream mainstream and tributaries were analyzed. Further, water pollution management and improvement measures for pollution-oriented rivers were proposed. An on-site investigation was conducted to determine the inflow of major pollutants into the basin, and it was found that pollutants generated from agricultural land and livestock facilities flowed into the river, resulting in a high concentration of turbid water. Based on the analysis results of the pollution load data calculated through actual measurement monitoring (flow and water quality) and the occurrence and emission load data calculated using the national pollution source survey data, the S3 and S6 were selected as the concerned pollution tributaries in the Songya-stream basin. Results of cluster analysis using Pearson correlation coefficient evaluation and Density based spatial clustering of applications with noise (DBSCAN) technique showed that the S3 and S6 were most consistent with the C2 cluster (a cluster of Songya-stream mainstream owned area) corresponding to the mainstream of Songya-stream. The analysis results of the major pollutants in the concerned pollution tributaries showed that livestock and land pollutants were the major pollutants. Consequently, optimal management techniques such as fertilizer management, water gate management in paddy, vegetated filter strip and livestock manure public treatment were proposed to reduce livestock and land pollutants.

Comparison of Machine Learning Techniques in Urban Weather Prediction using Air Quality Sensor Data (실외공기측정기 자료를 이용한 도심 기상 예측 기계학습 모형 비교)

  • Jong-Chan Park;Heon Jin Park
    • The Journal of Bigdata
    • /
    • v.6 no.2
    • /
    • pp.39-49
    • /
    • 2021
  • Recently, large and diverse weather data are being collected by sensors from various sources. Efforts to predict the concentration of fine dust through machine learning are being made everywhere, and this study intends to compare PM10 and PM2.5 prediction models using data from 840 outdoor air meters installed throughout the city. Information can be provided in real time by predicting the concentration of fine dust after 5 minutes, and can be the basis for model development after 10 minutes, 30 minutes, and 1 hour. Data preprocessing was performed, such as noise removal and missing value replacement, and a derived variable that considers temporal and spatial variables was created. The parameters of the model were selected through the response surface method. XGBoost, Random Forest, and Deep Learning (Multilayer Perceptron) are used as predictive models to check the difference between fine dust concentration and predicted values, and to compare the performance between models.

Development of an Occupational Safety and Health (OSH) Guide for Safely Cleaning Contaminated Machinery, Equipment, and Parts Used in the Electronics Manufacturing Process (전자산업 공정에서 사용한 부품, 기계류 세정(cleaning) 작업 안전보건 가이드)

  • Seunghee Lee;Soyeon Kim;Kyung Ehi Zoh;Yeong Woo Hwang;Kyong-Hui Lee;Kwang Jae Chung;Dong-Uk Park
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.33 no.4
    • /
    • pp.419-426
    • /
    • 2023
  • Objectives: This study aims to develop an Occupational Safety and Health (OSH) guide for the safe cleaning of contaminated machinery, equipment, and parts used in the electronics manufacturing process. Methods: A literature review, field investigations, and discussions were conducted. An initial draft of an OSH guide was developed and reviewed by experts with significant experience in maintenance work in the electronics manufacturing process in order to refine the guide. Results: Workers involved in cleaning processes with chemicals, solvents, and abrasive blasting can face exposure to a wide range of chemicals, abrasives, and noise. Identifying potential risks associated with each cleaning technique was an essential first step toward enhancing safety measures. The OSH guide comprises approximately eleven to twelve sections spanning 20-25 pages. It includes engineering and administrative protocols systematically organized to address the necessary actions before, during, and after cleaning tasks, depending on the technique. It is recommended that airline respirator masks be used in conjunction with an air purification system to ensure adherence to air quality standard "D" for atmosphere level. The use of an oil-free air compressor is advised, preferably a stationary model that does not rely on fuel sources like diesel. Conclusions: This OSH guide is designed to protect workers involved in maintenance activity in the electronics industry and aligns with global standards, such as those from the International Organization for Standardization (ISO) and Semiconductor Equipment and Material International, ensuring a higher level of safety and compliance.

An Assessment of Post-Injection Transmission Measurement for Attenuation Correction With Rotating Pin Sources in Positron Emission Tomography (양전자방출단층촬영(PET)에서 회전 핀선원과 투과 및 방출 동시 영상 방법을 이용한 감쇠보정 방법 특성에 관한 고찰)

  • Lee, J.R.;Choi, Y.;Lee, K.H.;Kim, S.E.;Chi, D.Y.;Shin, S.A.;Kim, B.T.
    • The Korean Journal of Nuclear Medicine
    • /
    • v.29 no.4
    • /
    • pp.533-540
    • /
    • 1995
  • Attenuation correction is important in producing quantitative positron emission tomography (PET) images. Conventionally, photon attenuation effects are corrected using transmission measurements performed before tracer administration. The pre-injection transmission measurement approach may require a time delay between transmission and emission scans for the tracer studies requiring a long uptake period, about 45 minutes for F-18 deoxyglucose study. The time delay will limit patient throughput and increase the likelihood of patient motion. A technique lot performing simultaneous transmission and emission scans (T+E method) after the tracer injection has been validated. The T+E method substracts the emission counts contaminating the transmission measurements to produce accurate attenuation correction coefficients. This method has been evaluated in experiments using a cylindrical phantom filled with background water (5750 cc) containing $0.4{\mu}Ci/cc$ of F-18 fluoride ion and one insert cylinder (276 cc) containing $4.3{\mu}Ci/cc$. GE $Advance^{TM}$ PET scanner and Ge-68 rotating pin sources for transmission scanning were used for this investigation. Post-injection transmission scan and emission scan were peformed alternatively over time. The error in emission images corrected using post-infection transmission scan to emission images corrected transmission scan was 2.6% at the concentration of $1.0{\mu}Ci/cc$. No obvious differences in image quality and noise were apparent between the two images. The attenuation correction can be accomplished with post-injection transmission measurement using rotating pin sources and this method can significantly shorten the time between transmission and omission scans and thereby reduce the likelihood of patient motion and increase scanning throughput in PET.

  • PDF