• Title/Summary/Keyword: Noise Problem

Search Result 2,513, Processing Time 0.023 seconds

The Effect of AD Noises Caused by AD Model Selection on Brand Awareness and Brand Attitudes (광고 모델 관련 광고 노이즈가 브랜드 인지도와 브랜드 태도에 미치는 영향)

  • Chung, Jai-Hak;Lee, Sang-Mi
    • Journal of Global Scholars of Marketing Science
    • /
    • v.18 no.3
    • /
    • pp.89-114
    • /
    • 2008
  • Most of the extant studies on communication effects have been devoted to the typical issue, "what types of communication activities are more effective for brand awareness or brand attitudes?" However, little research has addressed another question on communication decisions, "what makes communication activities less effective?" Our study focuses on factors negatively influenced on the efficiency of communication activities, especially of Advertising. Some studies have introduced concepts closely related to our topic such as consumer confusion, brand confusion, or belief confusion. Studies on product belief confusion have found some factors misleading consumers to misunderstand the physical features of products. Studies on brand confusion have uncovered factors making consumers confused on brand names. Studies on advertising confusion have tested the effects of ad models' employed by many other firms for different products on communication efficiency. We address a new concept, Ad noises, which are any factors interfering with consumers exposed to a particular advertisement in understanding messages provided by advertisements. The objective of this study is to understand the effects of ad noises caused by ad models on brand awareness and brand attitude. There are many different types of AD noises. Particularly, we study the effects of AD noises generated from ad model selection decision. Many companies want to employ celebrities as AD models while the number of celebrities who command a high degree of public and media attention are limited. Inevitably, several firms have been adopting the same celebrities as their AD models for different products. If the same AD model is adopted for TV commercials for different products, consumers exposed to those TV commercials are likely to fail to be aware of the target brand due to interference of TV commercials, for other products, employing the same AD model. This is an ad noise caused by employing ad models who have been exposed to consumers in other advertisements, which is the first type of ad noises studied in this research. Another type of AD noises is related to the decision of AD model replacement for the same product advertising. Firms sometimes launch another TV commercial for the same products. Some firms employ the same AD model for the new TV commercial for the same product and other firms employ new AD models for the new TV commercials for the same product. The typical problem with the replacement of AD models is the possibility of interfering with consumers in understanding messages of the TV commercial due to the dissimilarity of the old and new AD models. We studied the effects of these two types of ad noises, which are the typical factors influencing on the effect of communication: (1) ad noises caused by employing ad models who have been exposed to consumers in other advertisements and (2) ad noises caused by changing ad models with different images for same products. First, we measure the negative influence of AD noises on brand awareness and attitudes, in order to provide the importance of studying AD noises. Furthermore, our study unveiled the mediating conditions(variables) which can increase or decrease the effects of ad noises on brand awareness and attitudes. We study the effects of three mediating variables for ad noises caused by employing ad models who have been exposed to consumers in other advertisements: (1) the fit between product image and AD model image, (2) similarity between AD model images in multiple TV commercials employing the same AD model, and (3) similarity between products of which TV commercial employed the same AD model. We analyze the effects of another three mediating variables for ad noises caused by changing ad models with different images for same products: (1) the fit of old and new AD models for the same product, (2) similarity between AD model images in old and new TV commercials for the same product, and (3) concept similarity between old and new TV commercials for the same product. We summarized the empirical results from a field survey as follows. The employment of ad models who have been used in advertisements for other products has negative effects on both brand awareness and attitudes. our empirical study shows that it is possible to reduce the negative effects of ad models used for other products by choosing ad models whose images are relevant to the images of target products for the advertisement, by requiring ad models of images which are different from those of ad models in other advertisements, or by choosing ad models who have been shown in advertisements for other products which are not similar to the target product. The change of ad models for the same product advertisement can positively influence on brand awareness but positively on brand attitudes. Furthermore, the effects of ad model change can be weakened or strengthened depending on the relevancy of new ad models, the similarity of previous and current ad models, and the consistency of the previous and current ad messages.

  • PDF

The Study about Application of LEAP Collimator at Brain Diamox Perfusion Tomography Applied Flash 3D Reconstruction: One Day Subtraction Method (Flash 3D 재구성을 적용한 뇌 혈류 부하 단층 촬영 시 LEAP 검출기의 적용에 관한 연구: One Day Subtraction Method)

  • Choi, Jong-Sook;Jung, Woo-Young;Ryu, Jae-Kwang
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.13 no.3
    • /
    • pp.102-109
    • /
    • 2009
  • Purpose: Flash 3D (pixon(R) method; 3D OSEM) was developed as a software program to shorten exam time and improve image quality through reconstruction, it is an image processing method that usefully be applied to nuclear medicine tomography. If perfoming brain diamox perfusion scan by reconstructing subtracted images by Flash 3D with shortened image acquisition time, there was a problem that SNR of subtracted image is lower than basal image. To increase SNR of subtracted image, we use LEAP collimators, and we emphasized on sensitivity of vessel dilatation than resolution of brain vessel. In this study, our purpose is to confirm possibility of application of LEAP collimators at brain diamox perfusion tomography, identify proper reconstruction factors by using Flash 3D. Materials and methods: (1) The evaluation of phantom: We used Hoffman 3D Brain Phantom with $^{99m}Tc$. We obtained images by LEAP and LEHR collimators (diamox image) and after 6 hours (the half life of $^{99m}Tc$: 6 hours), we use obtained second image (basal image) by same method. Also, we acquired SNR and ratio of white matters/gray matters of each basal image and subtracted image. (2) The evaluation of patient's image: We quantitatively analyzed patients who were examined by LEAP collimators then was classified as a normal group and who were examined by LEHR collimators then was classified as a normal group from 2008. 05 to 2009. 01. We evaluate the results from phantom by substituting factors. We used one-day protocol and injected $^{99m}Tc$-ECD 925 MBq at both basal image acquisition and diamox image acquisition. Results: (1) The evaluation of phantom: After measuring counts from each detector, at basal image 41~46 kcount, stress image 79~90 kcount, subtraction image 40~47 kcount were detected. LEAP was about 102~113 kcount at basal image, 188~210 kcount at stress image and 94~103 at subtraction image kcount were detected. The SNR of LEHR subtraction image was decreased than LEHR basal image about 37%, the SNR of LEAP subtraction image was decreased than LEAP basal image about 17%. The ratio of gray matter versus white matter is 2.2:1 at LEHR basal image and 1.9:1 at subtraction, and at LEAP basal image was 2.4:1 and subtraction image was 2:1. (2) The evaluation of patient's image: the counts acquired by LEHR collimators are about 40~60 kcounts at basal image, and 80~100 kcount at stress image. It was proper to set FWHM as 7 mm at basal and stress image and 11mm at subtraction image. LEAP was about 80~100 kcount at basal image and 180~200 kcount at stress image. LEAP images could reduce blurring by setting FWHM as 5 mm at basal and stress images and 7 mm at subtraction image. At basal and stress image, LEHR image was superior than LEAP image. But in case of subtraction image like a phantom experiment, it showed rough image because SNR of LEHR image was decreased. On the other hand, in case of subtraction LEAP image was better than LEHR image in SNR and sensitivity. In all LEHR and LEAP collimator images, proper subset and iteration frequency was 8 times. Conclusions: We could archive more clear and high SNR subtraction image by using proper filter with LEAP collimator. In case of applying one day protocol and reconstructing by Flash 3D, we could consider application of LEAP collimator to acquire better subtraction image.

  • PDF

Self-optimizing feature selection algorithm for enhancing campaign effectiveness (캠페인 효과 제고를 위한 자기 최적화 변수 선택 알고리즘)

  • Seo, Jeoung-soo;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.173-198
    • /
    • 2020
  • For a long time, many studies have been conducted on predicting the success of campaigns for customers in academia, and prediction models applying various techniques are still being studied. Recently, as campaign channels have been expanded in various ways due to the rapid revitalization of online, various types of campaigns are being carried out by companies at a level that cannot be compared to the past. However, customers tend to perceive it as spam as the fatigue of campaigns due to duplicate exposure increases. Also, from a corporate standpoint, there is a problem that the effectiveness of the campaign itself is decreasing, such as increasing the cost of investing in the campaign, which leads to the low actual campaign success rate. Accordingly, various studies are ongoing to improve the effectiveness of the campaign in practice. This campaign system has the ultimate purpose to increase the success rate of various campaigns by collecting and analyzing various data related to customers and using them for campaigns. In particular, recent attempts to make various predictions related to the response of campaigns using machine learning have been made. It is very important to select appropriate features due to the various features of campaign data. If all of the input data are used in the process of classifying a large amount of data, it takes a lot of learning time as the classification class expands, so the minimum input data set must be extracted and used from the entire data. In addition, when a trained model is generated by using too many features, prediction accuracy may be degraded due to overfitting or correlation between features. Therefore, in order to improve accuracy, a feature selection technique that removes features close to noise should be applied, and feature selection is a necessary process in order to analyze a high-dimensional data set. Among the greedy algorithms, SFS (Sequential Forward Selection), SBS (Sequential Backward Selection), SFFS (Sequential Floating Forward Selection), etc. are widely used as traditional feature selection techniques. It is also true that if there are many risks and many features, there is a limitation in that the performance for classification prediction is poor and it takes a lot of learning time. Therefore, in this study, we propose an improved feature selection algorithm to enhance the effectiveness of the existing campaign. The purpose of this study is to improve the existing SFFS sequential method in the process of searching for feature subsets that are the basis for improving machine learning model performance using statistical characteristics of the data to be processed in the campaign system. Through this, features that have a lot of influence on performance are first derived, features that have a negative effect are removed, and then the sequential method is applied to increase the efficiency for search performance and to apply an improved algorithm to enable generalized prediction. Through this, it was confirmed that the proposed model showed better search and prediction performance than the traditional greed algorithm. Compared with the original data set, greed algorithm, genetic algorithm (GA), and recursive feature elimination (RFE), the campaign success prediction was higher. In addition, when performing campaign success prediction, the improved feature selection algorithm was found to be helpful in analyzing and interpreting the prediction results by providing the importance of the derived features. This is important features such as age, customer rating, and sales, which were previously known statistically. Unlike the previous campaign planners, features such as the combined product name, average 3-month data consumption rate, and the last 3-month wireless data usage were unexpectedly selected as important features for the campaign response, which they rarely used to select campaign targets. It was confirmed that base attributes can also be very important features depending on the type of campaign. Through this, it is possible to analyze and understand the important characteristics of each campaign type.